
Porting Linux to the M32R
Processor

Hirokazu Takata
Renesas Technology Corp., System Core Technology Div.

takata.hirokazu@renesas.com

～～～～～～～～ Renaissance SeRenaissance SeRenaissance SeRenaissance SeRenaissance SeRenaissance SeRenaissance SeRenaissance Seｍｍｍｍｍｍｍｍiconductor iconductor iconductor iconductor iconductor iconductor iconductor iconductor
　　for Advanced Solutions for Advanced Solutions for Advanced Solutions for Advanced Solutions for Advanced Solutions for Advanced Solutions for Advanced Solutions for Advanced Solutions ～～～～～～～～

Renesas ＝ Hitachi ＋ Mitsubishi

• Renesas Technology Corporation

– New joint company established by
Hitachi and Mitsubishi (April 2003)

– World’s Largest Microcontroller Company
• 32-bit RISC Microcomputer

– SuperH Family … for processor application
– M32R Family … for controller application

http://www.renesas.com/

Outline
• Introduction

– Why Linux on M32R?
– Object: to provide “M32R Linux platform”

• Target hardware environment
– M32R softmacro core, FPGA evaluation board

• Development of Linux/M32R
– Porting of the Linux kernel
– Development of GNU tools and libraries
– Preparation of software packages (deb packages)

• Summary
• Demonstration

Introduction

Sensor system

Control system
Server system

Terminal system

Network
(Internet)

• Background
– Progress of system LSI technology

⇒　System-on-a-Chip (SoC)
– Embedded systems will be connected

each other.
• Embedded systems will be more
functional.

• It is required to develop software
efficiently on a de facto standard
environment (Linux etc.).

• Objects
– Establish GNU/Linux environment

for the M32R
– Prototyping of a new M32R processor

• support SMP
• with MMU

Ubiquitous Network

M32R Linux Platform
• M32R microprocessor

– 32-bit RISC microprocessor for embedded systems
(Renesas original architecture)

• Linux/M32R Project (2000～)
– GNU/Linux Environment for M32R
– Development of Linux/M32R (A new architecture port to the M32R)

• Development of target hardware environment:
– New M32R cores (with MMU) and evaluation boards

• Porting Linux kernel
• Development of GNU toolchains (GCC, Binutils)
• Porting GNU C libraries
• Preparation of self tools and root filesystem

:

Linux/M32R Current Status

• Linux kernel
– linux-2.4.19
– with SMP support

• Device drivers
– Serial driver
– Ethernet LAN driver
– Frame buffer device
– PC/CF card

• Wireless LAN,
Compact flash, etc.

• User land
– Root filesystem: Based on the

Debian GNU/Linux
– Standalone/NFSRoot

environment
– Self tools

(GCC, Binutils, etc.)
– glibc-2.2.5
– LinuxThreds library (Pthreads)

Linux/M32R Current Status

• GUI Environment
– Window Systems

• X
• Qt-Embedded
• MicroWindows

Snapshot of the
X desktop image

⇒

Target Hardware Environment

• Develop the target hardware environment of the
M32R Linux Platform
– M32R softmacro core
– FPGA Evaluation board “Mappi”

M32R Softmacro Core
• Softmacro Core

(Full Synthesizable Core)
– Not dependent on process

technologies
– Can be mapped to an FPGA

→ Easy revise and update

• M32R-II Core
– Upper compatible ISA to the M32R
– 5-stage pipeline, dual-issue
– out-of-order completion
– MMU support
– Compact size

BIFSRAM

CPU bus

External bus

Peripheral
IO

Peripheral IO bus

SDI
CPU core

Cache MMU

SDI

EIF

（Internal bus
interface）

（External bus
interface）

ICU,
UART,
TIMER,
DMAC,etc.

M32R Softmacro

M32R Registers (M32R-II)

R0R0R0R0

R1R1R1R1

R2R2R2R2

R3R3R3R3

R4R4R4R4

R5R5R5R5

R6R6R6R6

R7R7R7R7

R8R8R8R8

R9R9R9R9

R10R10R10R10

R11R11R11R11

R12R12R12R12

R13R13R13R13

R14 R14 R14 R14 （（（（Link RegisterLink RegisterLink RegisterLink Register；；；；LRLRLRLR））））

R15 R15 R15 R15 （（（（Stack PointerStack PointerStack PointerStack Pointer；；；；SPSPSPSP））））

CR0 (PSW)CR0 (PSW)CR0 (PSW)CR0 (PSW)

CR1 (CBR)CR1 (CBR)CR1 (CBR)CR1 (CBR)

CR2 (SPI)CR2 (SPI)CR2 (SPI)CR2 (SPI)

CR3 (SPU)CR3 (SPU)CR3 (SPU)CR3 (SPU)

CR5 (EVB)CR5 (EVB)CR5 (EVB)CR5 (EVB)

CR6 (BPC)CR6 (BPC)CR6 (BPC)CR6 (BPC)

A0A0A0A0

A1A1A1A1

PCPCPCPC

General Purpose
Registers Control Registers

Accumulators

0 31 0 31

8 630

0 31

Program Counter

Processor Status Word
Condition Bit Register
Interrupt Stack Pointer
User Stack Pointer
EIT Vector Base Register
Backup PC

Evaluation Board “Mappi”

CPU Board (Upper)

Extension Board
（Lower）

• Simple board … minimum hardware for Linux
• 2 FPGAs on the CPU board;

An M32R softmacro core can be mapped into one FPGA.
　 →　Dual processor system can be achieved.

CPU

CPU Board

Block Diagram

SDRAM
64MB

FLASH
4MB

PC-cardLANDispC

Extension Board

CPU #1
or

User-LogicMem BIU

I/O

FPGA#0 FPGA#1

Development of Linux/M32R

• Port the Linux kernel
– Porting Linux kernel to the M32R processor
– Development of SMP kernel

• Enhance GNU tools (GCC, Binutils)
• Port GNU libraries (glibc, etc.)
• Prepare debug environment
• Build software packages

Porting of the Linux Kernel
• Architecture dependent portions

– include/asm-m32r/, arch/m32r/
• M32R specific implementations

– Asm function routines
– System call interface
– Memory management routines

• Based on the M32R’s MMU/Cache specification
• Split MMU exception handlers to lighten the TLB

miss operation.

Porting the Linux Kernel (Cont.)
• Linux kernel for the M32R

– Started to port linux-2.2 kernel (v2.2.16~)
– After that, upgraded to linux-2.4 kernel (the latest ver. is v2.4.19)

• Development process
– How we developed Linux kernel for the M32R …

• Started porting from the scheduler (by utilizing GNU simulator)
• It is difficult to complete compilation, if header files are not complete.
⇒ Having made stub routines, we developed the kernel gradually.

– What were problems?
• In Linux kernel, GCC enhancement features are heavily used

(inline functions, asm functions)
• Maturity of cross tools (Develop and debug tools in parallel)

System Call Interface
• System call I/F

– System call ： TRAP #2
　　　 R7： System call number

R0 ~ R6： arg 0 ～ arg 6　(max. 7 arguments)
– Pass pt_regs as an implicit stack parameter
– Stack is explicitly changed by CLRPSW instruction

Lower address

+0x00
+0x04
+0x08
+0x0c
+0x10
+0x14
+0x18
+0x1c
+0x20
+0x24
+0x28
+0x2c
+0x30
+0x34
+0x38
+0x3c
+0x40
+0x44
+0x48
+0x4c
+0x50
+0x54
+0x58
+0x5c
+0x60
+0x64

Top of stack； SPI
(= pt_regs) R4

R5
R6

*pt_regs
R0
R1
R2
R3
R7
R8
R9
R10
R11
R12

syscall_nr
ACC0H
ACC0L
ACC1H
ACC1L
PSW
BPC
SPU
R13
LR
SPI

ORIG_R0

Upper address

TRAP#2System call
invocation

User stack
（SPU）

Kernel stack
（SPI）

User process 　　Kernel

System call
execution

RTE

Memory Management
• Memory management of Linux (Paging)

– Demand loading operation and Copy-On-Write operation can be
executed by utilizing MMU exceptions.

　　⇒　MMU is necessary

• M32R-II Core
– MMU

• TLB entries are updated by software　(cf. MIPS)
• Number of TLB entries: Instruction/Data 16 entries (FPGA ver.)
• ４KB/page (Linux/M32R), Large page (４MB)

– Cache
• Instruction/Data separated cache
• Physically indexed physically tagged cache
⇒　Need no cache flushing operation

MMU Exception Handler
• Separate MMU exception operation into two exception handlers

(because TLB misses happen more frequently than page faults)
– TLB miss handler
– Access exception handler

• In order to lighten the TLB miss handler …
– Simplify the TLB miss handler; it just sets a TLB entry
– Write down in assembly code not to save full context

MMU exception!
(1) TLB miss exception
(2) access exception
　　　↓
reexecute after
the execution of
exception hanlders

TLB miss handler

Access exception handler

do_page_fault()
↓

handle_mm_fault()

Set the page attribute field of the TLB entry
（set the page attribute to “not accessible”）

Porting the Linux kernel

• Porting Linux kernel to the M32R
• Development of SMP kenrel

Shared SRAM
(512KB)

CPU0 CPU1
Peripherals

PLL

D-Cache
Data

I-Cache
Data

D
eb

ug
gi

ng
 I/

F
I-Cache

TAG
D-Cache

TAG

I-TLBD-TLB

DatapathMAC

M32R CPU Core Chip Photomicrograph

M32R Evaluation Chip
• M32R On-Chip Multiprocessor (Ref.: Proc. of ISSCC 2003, 14.5)

Development of MP Linux System
• Development of the SMP kernel

– Synchronization mechanism for SMP
• Semaphore
• Atomic access methods for variables
• Spin lock … LOCK/UNLOCK instructions

– Inter-Processor Communication
• Inter-Processor Interrupt (IPI)

– Boot operation

• Enhance GNU C Library (for multithread
programming)
– LinuxThreads library (Pthreads; POSIX 1003.1c)
– User-level mutual exclusion

Inter-Processor Interrupt (IPI)
• Inter-Processor Interrupt (IPI)

– To avoid a dead lock due to IPI collisions, only one CPU can send
IPI request in the M32R implementation.

• M32R’s IPI spec.
– IPI is non-maskable for the ICU

→　To mask IPI request,
set IE bit (interrupt enable bit)

– IPI requests are not queued
→　Sender CPU must confirm that

the request have received
by the receiver CPU.

Sender (CPU#0) Receiver (CPU#1)

Get ipi_lock

Send IPI

 IPICR0 bit#30 = 1

Confirmation

 wait until

 IPICR0 bit#0 = 0

Done

EIT happens

Receive IPI

 read ICUISTS1

IPI operation

 exec IPI#0 handler

Done

Inter-Processor Interrupt (IPI) (Cont.)
• IPI requests

– For the Linux/M32R, the following 5 IPI factors (IPI0～IPI4) are used.

CPU activation requestIPI4

TLB flushing requestIPI1

Request for local timer
operationIPI3

Function execution request
・Flush whole TLB entries
・CPU stop request
・Request to free the slab cache

IPI2

Rescheduling requestIPI0

OperationFactor

• IPI5～IPI7 are not used
• Local Timer

Currently, the local timer request is
handled by IPI, because a broadcasted
global timer request is not able to be
accepted by all CPUs due to the ICU
spec.

Boot Operation of SMP Kernel
• BSP (Boot Strap Processor)

– CPU boots the system (only one)
– BSP is selected by H/W

• AP (Application Processor)
– CPUs except BSP

• Boot sequence
– APs wait in sleeping at boot time

(only IPIs can be accepted)
– BSP initializes H/W and Linux,

and finally boots all APs.
– BSP sequentially activates APs,

then set synchronization flags
(smp_commenced) and makes APs
into idle state (idle thread).

BSP (CPU#0)

AP#0 (CPU#1)

Initialization

Boot request

 send IPI to AP#0

 AP#0 has started

Boot request

 send IPI to AP#1

 AP#1 has started

smp_commenced = 1

Sleeping;

accepts only IPIs

Boot

 initialization

AP#1 (CPU#2)

Sleeping;

accepts only IPIs

Boot

 initialization

Spin lock

Spin lock

smp_commenced != 0

cpu_idle() cpu_idle()

Development of Linux/M32R

• Port the Linux kernel
• Enhance GNU tools (GCC, Binutils)

– m32r-linux toolchain
– Dynamic linking support for shared libraries

• Port GNU libraries (glibc, etc.)
• Build software packages
• Prepare debug environment

Development of GNU Toolchain
• Enhancement of GNU tools (GCC, Binutils)

– GCC (gcc-2.95 → gcc-3.2.3), Binutils (v2.11.92)
• Based on the Cygnus GNUPro (m32r-elf toolchain)

– Support ELF’s dynamic linking function
• PIC generation, shared library support
• Enhancement of BFD library

– No changes of the C-language’s ABI (Application Binary Interface)
– Endian support (little-endian is newly supported)

• Cross tools
– Linux/x86 version cross tools (m32r-linux toolchain)

• Development of self tools
– gcc, binutils, bash, sed, awk, perl, tcl

Dynamic Linking Support
• Dynamic Linking

– Dynamic linking/loading must be supported to utilize shared libraries.
– Programs’s location (where to be loaded) is determined in runtime.

↓

A program must be a relocatable and position independent binary.
※ PIC (Position Independ Code)

• PIC (Position Independent Code)
– Address of global symbols are dynamically stored into a GOT.
– GOT is used to resolve global symbol references.

※ GOT (Global Offset Table)
– Target of subroutine calls are also resolved by using a PLT.

※ PLT (Procedure Linkage Table)

Implement ELF Dynamic Linking
• GOT (Global Offset Table)

– GOT is accessed via the R12 register
– PC value is fetched by
BL(branch&link) instruction

• PLT (Procedure Linkage Table)
– Symbol reference of a subroutine call is executed by

indirect referencing of GOT.
(like IA-32 implementation)

⇒　Invalidation of instruction cache lines are not required,
　because the code fragment of the PLT entries are not

changed.

:
; PROLOGUE
push r12
push lr
bl .+4
ld24 r12,#_GLOBAL_OFFSET_TABLE_
add r12,lr

:

Development of Linux/M32R

• Port the Linux kernel
• Enhance GNU tools (GCC, Binutils)
• Port GNU libraries (glibc, etc.)

– Dynamic linker for the dynamic linking
– LinuxThreads library (Pthreads)

• Prepare debug environment
• Build software packages

Porting Libraries
• Porting GNU C Library

– glibc-2.2.3 ⇒ glibc-2.2.5
– Dynamic Linker (ld-linux.so)

• To use shared linraries (dynamically-linked libraries)

– Implement LinuxThreads library (Pthreads)

• Development process
1. Statically-linked “hello” binary

• newlib version
• glibc version

2. Dynamically-linked binaries
• hello.c, busybox, ...

LinuxThreads Library
• Enhance GNU C Library (to support multi-thread)

– Multi-thread library:　provides multi-thread
programming env.

– LinuxThreads library (Pthreads; POSIX 1003.1c)
→　User-level mutual exclusion has to be implemented to port

• Implement user-level mutual exclusion functions
– On the user-level, interrupts cannot be disabled directly, and

M32R’s LOCK/UNLOCK instructions cannot be applied.
– Compare with some kind of mutual exclusion support methods

• system call implementation
• mutual exclusion algorithm

→　Employ the Lamport’s algorithm version

Development of Linux/M32R

• Port the Linux kernel
• Enhance GNU tools (GCC, Binutils)
• Port GNU libraries (glibc, etc.)
• Prepare debug environment

– Debug tools
– Development environment

• Build software packages

On-Chip Debugging Function
• SDI (Scalable Debug Interface)

– SDI: debug interface specification commonly used by
the M32R family

– On-chip debugging function can be used through
the JTAG port

• Download target programs
• Execute a monitor program

• Features
– Monitor program and/or monitor ROM are not required

on the target board.
– High speed download

Debug Tools
• GDB with SDI support

– Remote target: m32rsdi
– Download, execution and debug by using SDI function

• Virtual address is transformed by MMU
⇒　PC-break function is necessary.

• For the kernel debug
– GDB (with SDI support)
– Others： KGDB, GNU simulator (not support MMU)

• For the application debug
– strace (trace system call invocations)
– gdbserver (remote debugging via ethernet connection)

Development Environment

ICE/emulator

 Seria l
(Console）

Parallel or USB

Ethernet
(10BaseT)

Hub

Evaluation
Board
(Mappi)

M32R-SDI

(JTAG)

Host PC

(NFS server)

USB

FPGA adaptor
for download

Development of Linux/M32R

• Port the Linux kernel
• Enhance GNU tools (GCC, Binutils)
• Port GNU libraries (glibc, etc.)
• Prepare debug environment
• Build software packages

– Self packages for the target
– Cross packages for the host machine

Building Software Packages
• Employ the Debian GNU/Linux as a base distribution

– Sophisticated Package Management (→ efficient for developing)
– With cross development support

• dpkg-cross
• dpkg-buildpackage　　　　–a m32r　　　　–t m32r-linux

– .deb packages for M32R:　
bash, libc6, perl, etc. … more than 300 packages

• Problems under cross-development
– Header/library path is different from native environment.

• Cannot configure/make correctly
　　 (Perl,　X server/clients, etc.)
– Management of header files and shared libraries of target
⇒ Utilize both self and cross development environment

Building Packages for Cross Dev.

deb Packages
for Self Env.

Cross Tools

Self Env.
Install self packages

deb Packages
for Cross Env.

Source Packages

Install header files / libraries
for the target.

Converted by
dpkg-cross

Cross compile
(dpkg-buildpackage -a”m32r”)

“*-m32r-cross_*_all.deb”“*_m32r.deb”

Root FilesystemRoot Filesystem
　・RAM disk (initrd)
　・NFS Root

Evaluation

• Validation of Linux/M32R
– LSB test suites v1.2.0

LSB Test Suites
• LSB (Linux Standard Base) Test Suite

– Validation Test Suites for Linux
• http://www.linuxbase.org/test/

• LSB Test Suite v1.2 … LSB Specification 1.2
– Functional validation test suites: VSX-PCTS, LSB-OS

• Runtime Environment test suite
• Validation of the system call and standard library APIs

VSX-PCTS
(runtime) LSB-OS LSB-FHS LSB-

Usergroups

VSXgen –Generic test suite layer

Test Environment Toolkit

LSB 1.2

LSB Test Results

F M F M F M
Expect 386 1244 1244 394 1600 1600 908 908 8284 8284
Actual 386 1244 1244 394 1600 1600 908 908 8284 8284

176 1112 86 207 1333 0 695 0 3609 3583
4 0 0 5 2 0 49 0 60 45
0 12 0 0 5 0 2 0 19 18
2 0 0 2 2 0 1 0 7 7
0 0 0 0 0 0 5 0 5 4
0 0 0 0 0 0 0 0 0 0

203 0 0 179 72 0 59 0 513 513
0 4 0 0 7 0 59 0 50 43
1 116 1158 1 179 1600 58 908 4021 4021

ANS I.os Tota lP OS IX.hdr
Re dHat7.3

Tota l
P OS IX.os LS B.os

Warnings

Total

S ection ANS I.hdr

LS B-OS VS X-PCTS

NotInUs e

Unres olved
Uninitiated
Uns upported
Untes ted

Failed

FIP

S ucceed

Key: F: Function, M: Macro; FIP: Further Information Provided

• Validation Result : Good
• The result of Linux/M32R is comparable to RedHat7.3.

Future Work
• Linux/M32R Platform

– Performance evaluation, Tuning, and Stabilization
– Continue to develop and enhance

• Prepare development environment for middlewares, and
application programs

• Upgrade kernel version (2.5 kernel)
– MP performance, O(1) scheduler, Preemptive kernel, …

– Feedback to the processor core design

• M32R GNU/Linux development environment
– Publish the M32R GNU/Linux development

environment
• We’d like to merge source code to main stream if possible.

Summary
• Linux/M32R

– The GNU/Linux environment for the M32R architecture
– Linux system (UP / MP version) operates on

both the M32R softmacro cores mapped on FPGAs,
and an M32R single-chip multiprocessor evaluation chip.

• Hardware/software co-design approach is employed
• FPGA and M32R softmacro are useful for co-development or

co-design of software programs and hardware IPs.

• Linux for embedded systems
– The Open Source will provide a large impact on developing and

designing of embedded systems.
– Linux will play a great role in the field of embedded systems.

Linux/M32R Demonstration

Hirokazu Takata
Renesas Technology Corp., System Core Technology Div.

takata.hirokazu@renesas.com

Demonstration
• Linux/M32R Demo. on an FPGA board “Mappi-II”

– The M32R softmacro runs on an FPGA
– NFSroot mount with LAN connection
– GDB (GNU debugger) with JTAG connection support

• Linux/M32R SMP Operation Demonstration
– A tiny evaluation board “MicroServer” which has

an M32R evaluation chip.
– SMP kernel on the on-chip M32R multiprocessor

※ MicroServer : Developed by Mitsubishi Electric Corp.

Demonstration Environment

Micro
Server

FPGA Board (Mappi-II)

Wireless
Network

JTAG-ICE
Interface

Host PC

000000
00

Serial (Console)

Ethernet
PCPCPCPCFPGA

Configuration
ROM

Linux/M32R
• kernel-2.4.19
• glibc-2.2.5
• Debian GNU/Linux based

root filesystem

Evaluation Board “Mappi-II”

Compact Flash
×1

PC104 Bus

LAN×1
(100BaseTx)

USB×2

Serial×1

JTAG Emulator

On Board Memory
SDRAM ：64MB
Flash ROM : 4MB

FPGA
XCV2000E
(2M system gates)

M3A-ZA36

+

M3A-ZA36
XCV2000E
(2M system gates)

Extension FPGA Board

M3A-ZA36G01
XC2V4000
(4M system gates)

M3A-ZA36G02
XC2V1000
(1M system gates)

Main Board

Extension Boards for “Mappi-II”

insert
both sides

55mm CPU

65mm Name card box size

Example of Embedded Micro Server

Specification
・CPU ： CF size CPU module
・Network： Wired/Wireless LAN card

of CF size
・Others ： RS232C x1

System Image

Micro Server Module

37mm

46
m

m

M32R (Evaluation Chip)

• Features
CPU : M32R (Dual CPU)
OS ：Linux
MW ：WebServer (Boa)
SDRAM: 32MB
Flash : 8MB
I/F Con. : System, Debug,

Power Supply

• System Components
I/O : Compact Flash Card (*)
System Board, Power Supply

(*) LAN, PHS, MicroDrive, etc.
Lightweight wireless network

“CF Card Size” CPU Module

