
REJ09B0135-0100Z

 Rev.1.00
Revision date : Mar 01,2004

32

RENESAS 32-BIT OPEN PLATFORM SYNTHESIZABLE PROCESSOR

OPSP
Software Manual

Keep safety first in your circuit designs!

Notes regarding these materials

1. Renesas Technology Corporation puts the maximum effort into making semiconductor prod-
ucts better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with ap-
propriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-
flammable material or (iii) prevention against any malfunction or mishap.

1. These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corporation product best suited to the customer's application; they do
not convey any license under any intellectual property rights, or any other rights, belonging
to Renesas Technology Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringe-
ment of any third-party's rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, pro-
grams and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corporation without notice
due to product improvements or other reasons. It is therefore recommended that custom-
ers contact Renesas Technology Corporation or an authorized Renesas Technology Cor-
poration product distributor for the latest product information before purchasing a product
listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or
other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by
various means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product
data, diagrams, charts, programs, and algorithms, please be sure to evaluate all informa-
tion as a total system before making a final decision on the applicability of the information
and products. Renesas Technology Corporation assumes no responsibility for any dam-
age, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for
use in a device or system that is used under circumstances in which human life is poten-
tially at stake. Please contact Renesas Technology Corporation or an authorized Renesas
Technology Corporation product distributor when considering the use of a product con-
tained herein for any specific purposes, such as apparatus or systems for transportation,
vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or
reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions,
they must be exported under a license from the Japanese government and cannot be im-
ported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/
or the country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or
the products contained therein.

REVISION HISTORY OPSP Software Manual

Description Rev. Date
Page Summary

1.00 Mar 01,2004 - First edition issued

This page is blank for reasons of layout.

Rev.1.00 Mar 05,2004 (1)

REJ09B0135-0100Z

Table of contents

CHAPTER 1 CPU PROGRAMMING MODEL

1.1 Processor Modes .. 1-2
1.1.1 Privileged Instructions... 1-2

1.2 CPU Registers .. 1-2
1.3 General-purpose Registers ... 1-2
1.4 Control Registers .. 1-3

1.4.1 Processor Status Word Register: PSW (CR0)... 1-4
1.4.2 Condition Bit Register: CBR (CR1)... 1-5
1.4.3 Stack Pointer for Interrupt: SPI (CR2) and Stack Pointer for User: SPU (CR3) 1-5
1.4.4 EIT Vector Base Register: EVB (CR5) .. 1-6
1.4.5 Backup PC: BPC (CR6) .. 1-6

1.5 Accumulators ... 1-7
1.6 Program Counter (PC) ... 1-7
1.7 Data Formats .. 1-8

1.7.1 Bi-endian Function.. 1-8
1.7.2 Data Types ... 1-8
1.7.3 Data Formats .. 1-9

1.8 Addressing Modes .. 1-11

CHAPTER 2 INSTRUCTION SET

2.1 Outline of the Instruction Set .. 2-2
2.2 Instruction Set ... 2-2

2.2.1 Load and Store Instructions (10 instructions) .. 2-2
2.2.2 Transfer Instructions (6 instructions) ... 2-4
2.2.3 Arithmetic/Logical Instructions (46 instructions) .. 2-4
2.2.4 Branch Instructions (21 instructions) ... 2-6
2.2.5 Bit Manipulating Instructions (5 instructions) .. 2-8
2.2.6 EIT Related Instructions (2 instructions)... 2-8
2.2.7 DSP Function Instructions (22 instructions).. 2-9
2.2.8 Coprocessor Support Instructions (3 instructions).. 2-14

2.3 List of OPSP Extended Instruction Set .. 2-15
2.3.1 New Extended Instructions of the OPSP-CPU .. 2-15
2.3.2 Function-Extended Instructions of the OPSP-CPU .. 2-16

2.4 Instruction Formats ... 2-17
2.5 Parallel Instruction Execution ... 2-18

2.5.1 Instruction Formats ... 2-18
2.5.2 Parallel Instruction Execution in the OPSP.. 2-19
2.5.3 16-Bit Instruction List by Category.. 2-19
2.5.4 Positions of Parallel Executed Instructions... 2-21
2.5.5 Operand Interferences.. 2-22

Rev.1.00 Mar 05,2004 (2)

REJ09B0135-0100Z

CHAPTER 3 INSTRUCTIONS

3.1 Guide to Detailed Instruction Description.. 3-2
3.2 Detailed Description of Instructions ... 3-6
3.3 Notes about the BCL and BNCL Instructions .. 3-127
3.4 Exception and Trap Handling during Parallel Instruction Execution ... 3-128

APPENDICES

Appendix 1 Mechanism of Pipelined Instruction Processing..A-2
Appendix 1.1 Outline of Pipelined Instruction Processing ..A-2
Appendix 1.2 Flow of Instruction Processing in the O and S Pipes ..A-5
Appendix 1.3 Instructions and Pipelined Processing...A-6
Appendix 1.4 Pipelined Processing of Parallel Instructions ..A-7
Appendix 1.5 Basic Pipeline Operation ..A-8

Appendix 2 Instruction Processing Time ...A-12

CHAPTER 1
CHAPTER 1CPU PROGRAMMING MODEL

CPU PROGRAMMING MODEL
1.1 Processor Modes

Rev.0.01 Feb 05,2004 1-2

REJ09B0135-0001Z

1
1.1 Processor Modes

The OPSP-CPU core (hereafter abbreviated “OPSP-CPU”) provides two processor modes: Supervisor Mode and
User Mode. A hierarchical resource protection mechanism can be realized by using these processor modes. Each
processor mode has designated rights with respect to memory access and executable instructions, which are higher
for supervisor mode than for user mode.

When an EIT event occurs, the CPU goes to supervisor mode. The processor mode in which the CPU was
immediately before the EIT event occurred is stored in the backup PM (BPM) bit of the Processor Status Word
Register (PSW). When the RTE instruction is executed, the CPU returns to the previous processor mode that is
stored in the BPM bit.

1.1.1 Privileged Instructions

Privileged instructions are those that can only be executed in supervisor mode. If a privileged instruction is
executed in user mode, a privileged instruction exception occurs. The privileged instructions include RTE, MVTC,
SETPSW, and CLRPSW.

1.2 CPU Registers
The OPSP-CPU has 16 general-purpose registers, 6 control registers, 2 accumulators, and a program counter. The

accumulators are configured with 64 bits, while all other registers are configured with 32 bits.

1.3 General-purpose Registers

The general-purpose registers are 32 bits wide, and there are 16 of them (R0 to R15). These registers are used to
hold data and base addresses. Of these, R14 and R15 are used as a link register and a stack pointer (SPI or SPU),
respectively. The link register is used to hold the return address when executing a subroutine call instruction. The
stack pointer is switched between a stack pointer for interrupt (SPI) and a stack pointer for user (SPU) depending on
the value of the stack mode (SM) bit in the Processor Status Word Register (PSW).

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14 (Link register)

R15 (Stack pointer) Note

b0 b31 b0 b31

Note: The stack pointer is switched between a stack pointer for interrupt (SPI) and a stack pointer

for user (SPU) depending on the value of the SM bit in the PSW.

Figure 1.3.1 General-purpose Registers

CPU PROGRAMMING MODEL
1.4 Control Registers

Rev.0.01 Feb 05,2004 1-3

REJ09B0135-0001Z

1
1.4 Control Registers

There are six control registers: Processor Status Word Register (PSW), Condition Bit Register (C), Stack Pointer
for Interrupt (SPI), Stack Pointer for User (SPU), EIT Vector Base Register (EVB), and Backup PC (BPC).

Dedicated MVTC and MVFC instructions are used to set and read these control registers. Furthermore, SETPSW
and CLRPSW instructions can be used for the PSW.

MVTC, SETPSW, and CLRPSW are the privileged instructions that can only be executed when the CPU is
operating in supervisor mode. Which processor mode is active is determined by the processor mode (PM) bit in the
Processor Status Word Register (PSW).

Processor Status Word Register

Condition Bit Register

Stack Pointer for Interrupt

Stack Pointer for User

EIT Vector Base Register

Backup PC

CR0

CR1

CR2

CR3

CR5

CR6

CRn

PSW

CBR

SPI

SPU

EVB

BPC

b0 b31

Note 1: CRn (n = 0–3, 5, 6) denotes a control register number.

Note 2: Dedicated MVTC and MVFC instructions are used to set and read the control registers.

Figure 1.4.1 Control Registers

CPU PROGRAMMING MODEL
1.4 Control Registers

Rev.0.01 Feb 05,2004 1-4

REJ09B0135-0001Z

1
1.4.1 Processor Status Word Register: PSW (CR0)

The Processor Status Word Register (PSW) indicates the status of the OPSP-CPU. It consists of two bit fields: the
PSW field that is normally used, and the BPSW field in which the PSW field is saved when an EIT occurs.

The PSW field further consists of the stack mode bit (SM), interrupt enable bit (IE), processor mode bit (PM),
coprocessor interrupt enable bit (CE), and condition bit (C). Similarly, the BPSW field consists of the backup SM bit
(BSM), backup IE bit (BIE), backup PM bit (BPM), backup CE bit (BCE), and backup C bit (BC).

After reset, the BSM, BIE, BPM, BCE, and BC are indeterminate. All other bits are 0.
To switch the processor mode, set BPM = 1 using the MVTC instruction and then execute the RTE instruction to

branch to the user space(H'0000 0000 – H'7FFF FFFF). If the PM bit needs to be altered directly with the MVTC
instruction, always be sure to alter it in the user space.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PSW

b0 7 8 15 16 17 23 24 25 b31

0

BPSW field PSW field

BSM BIE BC SM IE C BPM

20 28

PM

BCE CE

21 29

<After reset: ”B’0000 0000 0000 0000 ??00 ??0? 0000 0000”>

b Bit Name Function R W

0–15 No functions assigned. Fix these bits to 0. 0 0

16 BSM

Backup SM bit

Save the value of the SM bit when an EIT is accepted. R W

17 BIE

Backup IE bit

Save the value of the IE bit when an EIT is accepted. R W

18–19 No functions assigned. Fix these bits to 0. 0 0

20 BPM

Backup PM bit

Save the value of the PM bit when an EIT is accepted.

R W

21 BCE

Backup CE bit

Save the value of the CE bit when an EIT is accepted. R W

22 No functions assigned. Fix these bits to 0. 0 0

23 BC

Backup C bit

Save the value of the C bit when an EIT is accepted. R W

24 SM

Stack mode bit

0: Stack pointer for interrupt is used.

1: Stack pointer for user is used.

R W

25 IE

Interrupt enable bit

0: Interrupt acceptance disabled

1: Interrupt acceptance enabled

R W

26–27 No functions assigned. Fix these bits to 0. 0 0

28 PM

Processor mode bit

0: Supervisor mode

1: User mode

R W

29 CE

Coprocessor interrupt enable bit

0: Coprocessor interrupt not accepted

1: Coprocessor interrupt accepted

R W

CPU PROGRAMMING MODEL
1.4 Control Registers

Rev.0.01 Feb 05,2004 1-5

REJ09B0135-0001Z

1

30 No functions assigned. Fix these bits to 0. 0 0

31 C

Condition bit

Indicate whether instruction execution resulted in a carry, borrow, or

overflow.

R W

1.4.2 Condition Bit Register: CBR (CR1)

The Condition Bit Register (CBR) is derived from the condition bit (C) of the PSW to serve as a separate register.
The value written to the condition bit in the PSW is reflected in this register. This register can only be read. (Writing to
this register with the MVTC instruction is ignored.)

After reset, the CBR is H’0000 0000.

b0

CBR CBR
b31

C

1.4.3 Stack Pointer for Interrupt: SPI (CR2) and Stack Pointer for User: SPU (CR3)

The Stack Pointer for Interrupt (SPI) and the Stack Pointer for User (SPU) hold the address of the current stack
pointer. These registers can be accessed as the general-purpose register R15. Whether R15 is used as the SPI or as
the SPU is determined by the stack mode bit (SM) in the PSW.

 b0

SPI SPI

b31

b0

SPU SPU

b31

CPU PROGRAMMING MODEL
1.4 Control Registers

Rev.0.01 Feb 05,2004 1-6

REJ09B0135-0001Z

1
1.4.4 EIT Vector Base Register: EVB (CR5)

The EIT Vector Base Register (EVB) holds the EIT vector entry start address. The 16 high-order bits of the EIT
vector entry start address comprise the value of the 16 high-order bits in this register.

b0

EVB EVB
b31

0 0 0 0 0 0 00000000

15 16

00

AT

<After reset: H'0000 0000>

b Bit Name Function R W

0 AT

Address translation mode bit

Address translation mode R N

1–15 EVB

Vector base bit

Set A1–A15 of EIT vector entry in these bits. R W

16–31 No functions assigned. Fix these bits to 0. 0 0

(1) AT (address translation mode) bit (b0)

This bit is a copy of the address translation mode bit (AT) in the MATM register, and is a read-only bit.

(2) EVB (EIT vector base) bits (b1–b15)

These bits set the EIT vector entry start address A1–A15. However, the reset interrupt (RI) vector is located at
the address H’0000 0000 no matter how the EIT vector base bits are set.

Note: The EVB register can be set only once immediately after reset. Write to the EVB register should be
performed at the beginning of a reset handler.

1.4.5 Backup PC: BPC (CR6)

The Backup PC (BPC) is used to save the value of the program counter (PC) when an EIT occurs. Bit 31 is fixed to
0.

When an EIT occurs, the PC value at which the EIT occurred or the PC value for the next instruction is set in the
BPC depending on the type of the EIT that occurred. The value of the BPC is returned to the PC when the RTE
instruction is executed.

b0

BPC BPC

b31

0

CPU PROGRAMMING MODEL
1.5 Accumulators

Rev.0.01 Feb 05,2004 1-7

REJ09B0135-0001Z

1
1.5 Accumulators

The accumulator is a 56-bit register used in the instructions for the DSP function. There are two of such
accumulators, ACC0 and ACC1. During read or write, the accumulator is handled as a 64-bit register. In this case,
bits 0–7 in the accumulator are sign-extended with the value of bit 8 during read, and are ignored during write. The
accumulator is also used in the multiplication instruction “MUL.” Be aware that when this instruction is executed, the
value of the accumulator, whether ACC0 or ACC1, is destroyed.

Use the MVTACHI and MVTACLO instructions to write to the accumulator. The MVTACHI and MVTACLO

instructions write data to the 32 high-order bits (bits 0–31) and the 32 low-order bits (bits 32–63) in the accumulator,
respectively.

Use the MVFACHI, MVFACLO, and MVFACMI instructions to read the accumulator. The MVFACHI, MVFACLO,
and MVFACMI instructions read data from the 32 high-order bits (bits 0–31), the 32 low-order bits (bits 32–63), and
the 32 middle bits (bits 16–47) in the accumulator, respectively.

After reset, ACC0 and ACC1 are indeterminate.

b0

ACC1
7 8 15 16 31 32 47 48 b63

Read/write range of the
MVTACHI and MVFACHI

instructions

Read/write range of the
MVTACLO and MVFACLO

instructions

b0

ACC0
7 8 15 16 31 32 47 48 b63

Read range of the MVFACMI instruction(Note)

Note: Bits 0–7 when read always show the value that is sign-extended with the value of bit 8. Write to this bit field
is ignored.

1.6 Program Counter (PC)

The Program Counter (PC) is a 32-bit counter that holds the address of the currently executed instruction. Since
the instructions in the OPSP-CPU begin from even addresses, the LSB (bit 31) in the PC is always 0.

After reset, the PC is H’0000 0000.

PC
b0

PC 0
b31

CPU PROGRAMMING MODEL
1.7 Data Formats

Rev.0.01 Feb 05,2004 1-8

REJ09B0135-0001Z

1
1.7 Data Formats

1.7.1 Bi-endian Function

The OPSP-CPU supports the bi-endian function that allows either data format, big endian or little endian, to be
adopted.

This manual is written for operation in big endian mode.

1.7.2 Data Types

The data types that the instruction set of the OPSP-CPU can handle are signed or unsigned 8, 16, and 32-bit
integers. Signed integer values are represented by the 2’s complement.

Signed byte
(8-bit) integer S

b0 b7

b0 b7

b0 b15

b0 b15

S

b0 b31

S

S: Sign bit

b0 b31

Unsigned byte
(8-bit) integer

Signed halfword
(16-bit) integer

Unsigned halfword
(16-bit) integer

Signed word
(32-bit) integer

Unsigned word
(32-bit) integer

Figure 1.7.1 Data Types

CPU PROGRAMMING MODEL
1.7 Data Formats

Rev.0.01 Feb 05,2004 1-9

REJ09B0135-0001Z

1
1.7.3 Data Formats

(1) Data formats in the OPSP-CPU registers
The data size in the OPSP-CPU registers is always the word (32 bits). When byte (8-bit) or halfword (16-bit) data in

memory is loaded into a register, the data is sign-extended (LDB, LDH instructions) or zero-extended (LDUB, LDUH
instructions) to the word (32-bit) quantity before being stored in the register.

When data in an OPSP-CPU register is stored into memory, the ST, STH, or STB instruction is used. The ST, STH,

and STB instructions store the full 32-bit data, the lower 16-bit data, or the least significant 8-bit data of the register in
memory, respectively.

b0 b31

<When loading data>
Sign-extended (LDB instruction) or
zero-extended (LDUB instruction)

From memory
(LDB or LDUB

instruction)

From memory
(LDH or LDUH instruction)

Byte

Halfword

From memory (LD instruction)

Word

Rn

Rn

Rn

ByteRn

<When storing data>

To memory (STB instruction)

HalfwordRn

To memory (STH instruction)

WordRn

To memory (ST instruction)

b0 b31

b0 b31

b0 b31

b0 b31

b0 b31

Sign-extended (LDH instruction) or
zero-extended (LDUH instruction)

Figure 1.7.2 Data Formats in Registers

CPU PROGRAMMING MODEL
1.7 Data Formats

Rev.0.01 Feb 05,2004 1-10

REJ09B0135-0001Z

1
(2) Data formats in memory

The data in memory has one of three data sizes: byte (8 bits), halfword (16 bits), or word (32 bits). Although byte
data can be located at any address, halfword and word data must be located at halfword-aligned addresses (least
significant address bit = 0) and word-aligned addresses (two least significant address bits = 00), respectively. If
access to misaligned memory data is attempted, an address exception occurs.

Byte

0

+0 address

31

Address

Byte

Byte

Byte

Byte

Halfword

Halfword

WordWord

+1 address +2 address +3 address

Halfword

Figure 1.7.3 Data Formats in Memory

CPU PROGRAMMING MODEL
1.8 Addressing Modes

Rev.0.01 Feb 05,2004 1-11

REJ09B0135-0001Z

1
1.8 Addressing Modes

The OPSP-CPU has the following addressing modes:

(1) Register direct [expressed as R or CR or ANote]
A general-purpose or control register or an accumulator is specified directly as the target to be operated on.

(2) Register indirect [expressed as @R]

The address is indicated indirectly by a register value. (This addressing mode can be specified in all load and store
instructions.)

(3) Register relative indirect (expressed as @(disp,R)]

The address is indicated indirectly by (register value) + (16-bit displacement which is sign-extended to 32 bits).

(4) Register indirect + register update

• Register value incremented by 1
The address is indicated by a preupdate register value (specifiable in only STB instruction)

• Register value incremented by 2
The address is indicated by a preupdate register value (specifiable in only STH instruction)

• Register value incremented by 4
The address is indicated by a preupdate register value (specifiable in only LD instruction)

• Register value incremented by 4
The address is indicated by an updated register value (specifiable in only ST instruction)

• Register value decremented by 4
The address is indicated by an updated register value (specifiable in only ST instruction)

(5) Immediate [expressed as #imm]

1, 4, 5, 8, 16, or 24-bit immediate value. (For details on how the value is handled, refer to the detailed description of
each instruction in the latter part of this manual.)

(6) PC relative [expressed as pcdisp]

The address is indicated by (PC value) + (8, 16, or 24-bit displacement which is sign-extended to 32 bits and then
shifted left 2 bits).

Note: The accumulators ACC0 and ACC1 are mnemonically expressed as A0 and A1, respectively.

CPU PROGRAMMING MODEL
1.8 Addressing Modes

Rev.0.01 Feb 05,2004 1-12

REJ09B0135-0001Z

1

This page is blank for reasons of layout.

CHAPTER 2
CHAPTER 2INSTRUCTION SET

INSTRUCTION SET
2.1 Outline of the Instruction Set

Rev.0.01 Feb 05,2004 2-2

REJ09B0135-0001Z

2
2.1 Outline of the Instruction Set

The OPSP-CPU has 115 distinct instructions. A RISC architecture is adopted for the OPSP-CPU, so that memory
access basically is accomplished by using load and store instructions. Arithmetic/logical operations are executed by
register-to-register operation. Furthermore, compound instructions such as Load & Address Update and Store &
Address Update are supported.

2.2 Instruction Set

The instruction set of the OPSP-CPU is shown below.
New instructions that have been added in the OPSP-CPU from the M32R family instruction set are marked by

double asterisks (**), and function-extended instructions are marked by a single asterisk (*).

2.2.1 Load and Store Instructions (10 instructions)

These instructions perform data transfer between memory and a register.

 LD Load

 LDB Load byte

 LDUB Load unsigned byte

 LDH Load halfword

 LDUH Load unsigned halfword

 LOCK Load locked

 ST Store

* STB Store byte

* STH Store halfword

 UNLOCK Store unlocked

INSTRUCTION SET
2.2 Instruction Set

Rev.0.01 Feb 05,2004 2-3

REJ09B0135-0001Z

2
Following three addressing modes can be specified in the load and store instructions.

(1) Register indirect
The address is indicated indirectly by a register value. (This addressing mode can be specified in all load and store

instructions.)

(2) Register relative indirect

The address is indicated indirectly by (register value) + (16-bit displacement which is sign-extended to 32 bits).
(This addressing mode can be specified in all load and store instructions other than LOCK and UNLOCK.)

(3) Register indirect + register update

• Register value incremented by 1
The address is indicated by a preupdate register value (specifiable in only STB instruction)

• Register value incremented by 2
The address is indicated by a preupdate register value (specifiable in only STH instruction)

• Register value incremented by 4
The address is indicated by a preupdate register value (specifiable in only LD instruction)

• Register value incremented by 4
The address is indicated by an updated register value (specifiable in only ST instruction)

• Register value decremented by 4
The address is indicated by an updated register value (specifiable in only ST instruction)

Whichever addressing mode is used, rules for the data formats in memory must be observed. To access halfword

or word data, a halfword aligned or word aligned address must be specified, respectively. (The two least significant
bits of the accessed address must be “00” or “10” for halfword data, or “00” for word data.) If a misaligned address is
specified, an address exception occurs.

If byte or halfword data is accessed in a load instruction, the data has its high order bits sign or zero-extended to
become 32-bit data before being stored in a register.

INSTRUCTION SET
2.2 Instruction Set

Rev.0.01 Feb 05,2004 2-4

REJ09B0135-0001Z

2
2.2.2 Transfer Instructions (6 instructions)

These instructions perform a register to register transfer or a register to immediate transfer.

 LD24 Load 24-bit immediate

 LDI Load immediate

 MV Move register

 MVFC Move form control register

 MVTC Move to control register

 SETH Set high-order 16bit

2.2.3 Arithmetic/Logical Instructions (46 instructions)

These instructions perform register to register comparison, arithmetic/logical operation, multiplication/division, or
shift operation.

 Comparison (7 instructions)

 CMP Compare

** CMPEQ Compare equal to

 CMPI Compare immediate

 CMPU Compare unsigned

 CMPUI Compare unsigned immediate

** CMPZ Compare equal to zero

** PCMPBZ Parallel compare byte to zero

 Arithmetic operation (10 instructions)

 ADD Add

 ADD3 Add 3-operand

 ADDI Add immediate

 ADDV Add with overflow

 ADDV3 Add 3-operand with overflow

 ADDX Add with carry

 NEG Negate

 SUB Subtract

 SUBV Subtract with over flow

 SUBX Subtract with borrow

 Logical operation (7 instructions)

 AND AND

 AND3 AND 3-operand

 NOT Logical NOT

 OR OR

 OR3 OR 3-operand

 XOR Exclusive OR

 XOR3 Exclusive OR 3-operand

INSTRUCTION SET
2.2 Instruction Set

Rev.0.01 Feb 05,2004 2-5

REJ09B0135-0001Z

2
 Multiplication/division (13 instructions)

 DIV Divide

** DIVB Divide byte

** DIVH Divide halfword

 DIVU Divide unsigned

** DIVUB Divide unsigned byte

** DIVUH Divide unsigned halfword

 MUL Multiply

 REM Reminder

** REMB Reminder byte

** REMH Reminder halfword

 REMU Reminder unsigned

** REMUB Reminder unsigned byte

** REMUH Reminder unsigned halfword

 Shift (9 instructions)

 SLL Shift left logical

 SLL3 Shift left logical 3-operand

 SLLI Shift left logical immediate

 SRA Shift right arithmetic

 SRA3 Shift right arithmetic 3-operand

 SRAI Shift right arithmetic immediate

 SRL Shift right logical

 SRL3 Shift right logical 3-operand

 SRLI Shift right logical immediate

INSTRUCTION SET
2.2 Instruction Set

Rev.0.01 Feb 05,2004 2-6

REJ09B0135-0001Z

2
2.2.4 Branch Instructions (21 instructions)

These instructions are used to change the program flow.

 BC Branch on C-bit

** BCL Branch and link on C-bit

 BEQ Branch on equal to

 BEQZ Branch on equal to zero

 BGEZ Branch on greater than or equal to zero

 BGTZ Branch on greater than zero

 BL Branch and link

 BLEZ Branch on less than or equal to zero

 BLTZ Branch on less than zero

 BNC Branch on not C-bit

** BNCL Branch and link on not C-bit

 BNE Branch on not equal to

 BNEZ Branch on not equal to zero

 BRA Branch

** JC Jump on C-bit

 JL Jump and link

 JMP Jump

** JNC Jump on not C-bit

 NOP No operation

** SC Skip on C-bit

** SNC Skip on not C-bit

Only the word aligned addresses (those aligned with word boundaries) can be specified as the jump address.

INSTRUCTION SET
2.2 Instruction Set

Rev.0.01 Feb 05,2004 2-7

REJ09B0135-0001Z

2
For the BRA, BL, BC, BNC, BCL and BNCL instructions, an 8-bit or 24-bit immediate value can be specified in

addressing mode. For the BEQ, BNE, BEQZ, BNEZ, BGTZ, BLTZ, BGEZ and BLEZ instructions, a 16-bit immediate
value should be specified in addressing mode.

For the JMP, JL, JC and JNC instructions, the jump address is specified by a register value. However, the two least
significant address bits are ignored.

For the SC and SNC instructions, the jump address is indicated by (PC value of the branch instruction) + 4.
For other branch instructions, the jump address is indicated by (PC value of branch instruction) + (sign-extended

immediate value that is shifted two bits left). However, the two least significant bits of the PC value are cleared to 0
when an addition is performed. In Figure2.2.1, for example, assume that instruction A or instruction B is the branch
instruction, and that the program is to jump to instruction G. Then the immediate value, in either case, is 4.

For the JL, BL, BCL and BNCL instructions that are used for subroutine calls, the PC value for the return address is
stored in R14 at the same time the program branches off. The value stored in R14 is (PC value of branch instruction
+ 4), with the two least significant bits of the PC value cleared to 0. In Figure2.2.1, for example, assume that
instruction A or instruction B is the JL, BL, BCL, or BNCL instruction. Then the return address, in either case, is the
“instruction C.”

Address +0 +1 +2 +3

H'00 Instruction A Instruction B

H'04 Instruction C Instruction D

H'08 Instruction E

H'0C Instruction F

H'10 Instruction G Instruction F

1Word(32bits)

Branch instruction

Figure2.2.1 Jump Address of a Branch Instruction

INSTRUCTION SET
2.2 Instruction Set

Rev.0.01 Feb 05,2004 2-8

REJ09B0135-0001Z

2
2.2.5 Bit Manipulating Instructions (5 instructions)

These instructions set or clear the bits in memory or registers and those in the Processor Status Word Register
(PSW).

** BCLR Bit clear

** BSET Bit set

** BTST Bit test

** CLRPSW Clear PSW

** SETPSW Set PSW

2.2.6 EIT Related Instructions (2 instructions)

These instructions are provided for EIT events (Exception, Interrupt and Trap). These include an instruction to
invoke a trap and an instruction to return from EIT handling.

* TRAP Trap

* RTE Return from EIT

INSTRUCTION SET
2.2 Instruction Set

Rev.0.01 Feb 05,2004 2-9

REJ09B0135-0001Z

2
2.2.7 DSP Function Instructions (22 instructions)

In the OPSP-CPU, the DPS function instructions of the M32R family instruction set have been extended as follows:
 There are two accumulators, compared to one in the past.
 Multiply-accumulate operations are enhanced.
 New general-purpose register rounding instructions are added.

The DPS function instructions of the OPSP-CPU are shown below.
New instructions that have been added in the OPSP-CPU from the M32R family instruction set are marked by

double asterisks (**), and function-extended instructions are marked by a single asterisk (*).
These instructions include those that perform 32 bit × 16 bit or 16 bit × 16 bit multiply or multiply-accumulate

operations. Also included are those that round the data in an accumulator or general-purpose register or perform data
transfer between an accumulator and general-purpose register.

* MACHI Multiply-accumulate high-order halfwords

** MACLH1 Multiply-accumulate low-order halfword and high-order halfword using

accumulator1

* MACLO Multiply-accumulate low-order halfwords

 MACWHI Multiply-accumulate word and high-order halfword

 MACWLO Multiply-accumulate word and low-order halfword

** MACWU1 Multiply-accumulate word and unsigned low-order halfword using

accumulator1

** MSBLO Multiply low-order halfwords and subtract

* MULHI Multiply high-order halfwords

* MULLO Multiply low-order halfwords

 MULWHI Multiply word and high-order halfword

 MULWLO Multiply word and low-order halfword

** MULWU1 Multiply word and unsigned low-order halfword

using accumulator1

* MVFACHI Move high-order word from accumulator

* MVFACLO Move low-order word from accumulator

* MVFACMI Move middle-order word from accumulator

* MVTACHI Move high-order word to accumulator

* MVTACLO Move low-order word to accumulator

* RAC Round accumulator

* RACH Round accumulator halfword

** SADD Add accumulators

** SATB Saturate word into byte

** SATH Saturate word into halfword

Operation of these instructions are schematically shown in the next pages.

INSTRUCTION SET
2.2 Instruction Set

Rev.0.01 Feb 05,2004 2-10

REJ09B0135-0001Z

2

Rsrc1

0

MULHI instruction

ACC0,ACC1

L H L H
15 16 31

Rsrc2

0 15 16 31

0 63

MULLO instruction

Rsrc1

0

MULWHI instruction

ACC0

L H
31

Rsrc2

0 15 16 31

0 63

MULWLO instruction

32 bits

Rsrc1

0

ACC1

L
31

Rsrc2 (unsigned)

16 31

0 63

MULWU1 instruction

32 bits

Note: In the actual operation of the DSP function instructions, the result is adjusted for the
storage location or sign-extended. For details, refer to Chapter 3, “Instructions".

Figure2.2.2 Operation of the DSP Function Instructions 1 (Multiplication)

INSTRUCTION SET
2.2 Instruction Set

Rev.0.01 Feb 05,2004 2-11

REJ09B0135-0001Z

2

Rsrc1

0

MACHI instruction

ACC0,ACC1

L H L H
15 16 31

Rsrc2

0 15 16 31

0 63

MACLO instruction

Note: In the actual operation of the DSP function instructions, the result is adjusted for the
storage location or sign-extended. For details, refer to Chapter 3, “Instructions”.

ACC0,ACC1
0 63

Rsrc1

0

MACWHI instruction

ACC0

32 bits L H
31

Rsrc2

0 15 16 31

0 63

MACWLO instruction

ACC0
0 63

Rsrc1

0

ACC1

L
31

Rsrc2 (unsigned)

16 31

0 63

MACWU1 instruction

ACC1
0 63

32 bits

Figure2.2.3 Operation of the DSP Function Instructions 2 (Multiply-Accumulate Operation)

INSTRUCTION SET
2.2 Instruction Set

Rev.0.01 Feb 05,2004 2-12

REJ09B0135-0001Z

2

Note: In the actual operation of the DSP function instructions, the result is adjusted for the
storage location or sign-extended. For details, refer to Chapter 3, “Instructions.”

Rsrc1

ACC1

 H
16 31

Rsrc2

0 63
MACLH1 instruction

ACC1
0 63

L
0 15

Rsrc1

ACC0

L
16 31

Rsrc2

16 31

0 63
MSBLO instruction

ACC0
0 63

L

Figure2.2.4 Operation of the DSP Function Instructions 3 (Multiply-Accumulate Operation)

Note: In the actual operation of the DSP function instructions, the result is adjusted for the
storage location or sign-extended. For details, refer to Chapter 3, “Instructions.”

ACC0

0 63SADD instruction

ACC1
0 63

ACC
0 63 8 24

Figure2.2.5 Operation of the DSP Function Instructions 4 (Addition)

INSTRUCTION SET
2.2 Instruction Set

Rev.0.01 Feb 05,2004 2-13

REJ09B0135-0001Z

2

ACC0,ACC1

0 63

ACC0,ACC1

0 63

<Rounding the accumulator data to a word size> <Rounding the accumulator data to a halfword size>

Data Sign 0 0 DataSign

RACH instructionRAC instruction

0 63 0 63

<Rounding the data in a general-purpose register
to a byte size>

<Rounding the data in a general-purpose register
to a halfword size>

Rsrc

Sign

0 31

Data

SATB instruction

0 31

Rsrc

Sign

SATH instruction

0 31

0 31

Data

Figure2.2.6 Operation of the DSP Function Instructions 5 (Rounding)

ACC0,ACC1

0 63

Rdest

0

15 16 31 32 47 48

31

ACC0,ACC1

0 6331 32

Rsrc

0 31

MVTACHI
instruction

MVTACLO
instruction

MVFACMI instruction

MVFACLO
instruction

MVFACHI
instruction

Figure2.2.7 Operation of the DSP Function Instructions 6 (Transfer between Accumulator and Register)

INSTRUCTION SET
2.2 Instruction Set

Rev.0.01 Feb 05,2004 2-14

REJ09B0135-0001Z

2
2.2.8 Coprocessor Support Instructions (3 instructions)

These instructions are used for interfacing with a coprocessor, as shown below.

* MVTCP Move to Coprocessor register

* MVFCP Move from Coprocessor register

* OPECP Operate Coprocessor

INSTRUCTION SET
2.3 List of OPSP Extended Instruction Set

Rev.0.01 Feb 05,2004 2-15

REJ09B0135-0001Z

2
2.3 List of OPSP Extended Instruction Set

The instruction set of the OPSP-CPU has 27 new instructions that have been added as extensions from the M32R
family instruction set and 21 conventional instructions which have had their functionality extended.

2.3.1 New Extended Instructions of the OPSP-CPU

Table2.3.1 List of new extended instructions

Classification Mnemonic Functional outline

CMPEQ Compare between registers

CMPZ Compare register and immediate 0

Comparison

instructions

PCMPBZ Compare register and immediate 0 bytewise

DIVB Divide 8-bit signed integer

DIVH Divide 16-bit signed integer

DIVUB Divide 8-bit unsigned integer

DIVUH Divide 16-bit unsigned integer

REMB Remainder of 8-bit signed integer

REMH Remainder of 16-bit signed integer

REMUB Remainder of 8-bit unsigned integer

Multiplication/

division instructions

REMUH Remainder of 16-bit unsigned integer

BCL Branch if condition bit (C) = 1 and store return address in R14

BNCL Branch if condition bit (C) = 0 and store return address in R14

JC Branch if condition bit (C) = 1

JNC Branch if condition bit (C) = 0

SC Skip parallel execution pair if condition bit (C) = 1

Branch instructions

SNC Skip parallel execution pair if condition bit (C) = 0

MACLH1 Multiply-accumulate operation (register × register + accumulator A1

→ accumulator A1)

MACWU1 Multiply-accumulate operation (register × register + accumulator A1

→ accumulator A1)

MSBLO Multiply-accumulate operation (accumulator A0 – register × register →

accumulator A0)

MULWU1 Multiplication (register × register → accumulator A1)

SADD Addition (accumulator A0 + accumulator A1 → accumulator A0)

SATB Round register data to byte size

DSP function

instructions

SATH Round register data to halfword size

MVTCP Move to coprocessor register

MVFCP Move from coprocessor register

Coprocessor

support instructions

OPECP Coprocessor operation

Note: In the table, the accumulators ACC0 and ACC1 are mnemonically expressed as A0 and A1, respectively.

INSTRUCTION SET
2.3 List of OPSP Extended Instruction Set

Rev.0.01 Feb 05,2004 2-16

REJ09B0135-0001Z

2
2.3.2 Function-Extended Instructions of the OPSP-CPU

Table2.3.2 List of function-extended instructions

Classification Mnemonic Function-extended content

MACHI

MACLO

MULHI

MULLO

MVFACHI

MVFACLO

MVFACMI

MVTACHI

MVTACLO

Accumulator A0 or A1 can be specified in the operand

description.

RAC

DSP function

instructions

RACH

Accumulator A0 or A1 can be specified in the operand

description. In addition, the result deriving after left-shifting the

accumulator bit specified by an immediate (imm1) is rounded.

SLL

SLLI

SRA

SRAI

SRL

Arithmetic/logical

instructions

SRLI

The parallel-executed instruction category has been changed

from the left-side instruction (O–) to the both-side instruction

(OS). (For details about the instruction category, refer to Section

2.5.3, “16-Bit Instruction List by Category.”

STB Load/store

instructions STH

Register update has been added to addressing modes.

TRAP The run-time BPC value has been changed from BPC = PC + 4

to BPC = PC of the next instruction.

EIT related

instructions

RTE Return to the halfword boundary is possible.

Note: In the table, the accumulators ACC0 and ACC1 are mnemonically expressed as A0 and A1, respectively.

INSTRUCTION SET
2.4 Instruction Formats

Rev.0.01 Feb 05,2004 2-17

REJ09B0135-0001Z

2
2.4 Instruction Formats

The OPSP-CPU has two instruction formats: a 16-bit instruction, two of which are stored in pairs within the 32-bit
word boundary, and a 32-bit instruction. (See Figure2.4.1.)

The basic instruction formats of the OPSP-CPU are shown in Figure2.4.2.

Address +0 +1 +2 +3

16-bit instruction A 16-bit instruction B

Address +0 +1 +2 +3

32-bit instruction

1Word (32bits)

Figure2.4.1 16-Bit and 32-Bit Instructions

c

op1 R1 op2 R2

 16-bit instruction

 32-bit instruction

op1 R1 c

op1 cond c

<Instruction format> <Operation of the instruction> <Example instruction>

R1 = R1 op R2

R1 = R1 op c

AND Rdest , Rsrc

ADD Rdest , #imm8

Branch (Short Displacement) BC pcdisp8

op1 R1 op2 R2

<Instruction format> <Operation of the instruction> <Example instruction>

R1 = R2 op c

Compare and Branch

SRL3 Rdest , Rsrc , #imm16

BEQ Rsrc1 , Rsrc2 ,

R1 = R1 op c LD24 Rdest , #imm24

c op1 R1 op2 R2

c op1 R1

c op1 cond Branch BC pcdisp24

Figure2.4.2 Basic Instruction Formats

INSTRUCTION SET
2.5 Parallel Instruction Execution

Rev.0.01 Feb 05,2004 2-18

REJ09B0135-0001Z

2
2.5 Parallel Instruction Execution

2.5.1 Instruction Formats

The OPSP-CPU instruction set architecture supports parallel instruction execution for two 16-bit instructions that
are stored in pairs within the word boundary. Whether two instructions are executed in parallel is determined by the
value of the most significant bit (MSB) of each 16-bit instruction. (The MSB of each instruction only determines the
method of instruction execution and does not affect the functionality of the instruction.)

The MSB of any 16-bit instruction that exists in the upper halfword location is always 0. If the MSB of the instruction
that follows is also 0, then the two instructions are executed sequentially; if the MSB = 1, the two instructions are
executed in parallel.

If the MSB of instruction B in Figure2.5.2 is 0, then instruction A and instruction B are executed sequentially. If the
MSB of instruction B is 1, then instruction A and instruction B are executed in parallel. If instruction B needs to be
executed in parallel, it is automatically altered to an instruction whose MSB is set to 1 by the assembler. For the same
reason, NOP instructions used to adjust the word alignment have always their MSB set to 1 by the assembler.

The MSB of all 32-bit instructions is always 1, so that they are not executed in parallel.

16-bit instruction B

0 16-bit instruction A

<Instruction execution>

Instruction A & instruction B in parallel

0 16-bit instruction B

0 16-bit instruction A 1

1 32-bit instruction A

0 16-bit instruction A 1111 0000 0000 0000

0111 0000 0000 0000

16-bit instruction B whose
MSB is set to 1 Note

NOP instruction whose MSB
is set to 1 Note

NOP instruction

Instruction A → instruction B sequential

MSB

MSB MSB

Instruction A & NOP instruction in parallel

Inserted by the assembler

Note: The instruction located in the lower 16-bit part of the word boundary that is to be executed in
 parallel with the preceding instruction has its MSB automatically set to 1 by the assembler.

Figure 2.5.1 Instruction Processing

INSTRUCTION SET
2.5 Parallel Instruction Execution

Rev.0.01 Feb 05,2004 2-19

REJ09B0135-0001Z

2
2.5.2 Parallel Instruction Execution in the OPSP

The OPSP-CPU has two pipelines: O pipe and S pipe. Two 16-bit instructions are executed in parallel using these
two pipelines.

The 16-bit instructions executed in the S pipe include DSP function instructions and multiplication, arithmetic
operation, logical operation, shift, comparison, transfer and NOP instructions. In the O pipe, on the other hand, all
16-bit instructions except DSP function and multiplication instructions can be executed.

Note that 32-bit instructions are not executed in parallel, and that all of them are executed in the O pipe.

 [O pipe] [S pipe]
Jump/load/store instruction + Arithmetic/logic instruction
Jump/load/store instruction + DSP function instruction
Arithmetic/logic instruction + Arithmetic/logic instruction
Arithmetic/logic instruction + DSP function instruction

Decoder1 Decoder2
Instruction Decoder

ALU Shift
Load/
store PC

32-bit
Register ×16 MUL ALU

Load/store
Arithmetic operation

Logical operation

Sum-of-products operation
Arithmetic operation

Logical operation

Shift

Combination of instructions
executable in parallel

Figure2.5.2 Parallel Instruction Execution Mechanism of the OPSP-CPU

2.5.3 16-Bit Instruction List by Category

The 16-bit instructions that can be executed in parallel are classified into three categories by the executable
pipeline.

 Instructions that can be executed in only the O pipe (left-side instruction: O–)
 Instructions that can be executed in only the S pipe (right-side instruction: –S)
 Instructions that can be executed in both O and S pipes (both-side instruction: OS)

The 16-bit instructions classified by category are listed in Table2.5.1.

INSTRUCTION SET
2.5 Parallel Instruction Execution

Rev.0.01 Feb 05,2004 2-20

REJ09B0135-0001Z

2

Table2.5.1 16-Bit Instruction List by Category

O– (left-side instructions) OS (both-side instructions) –S (right-side instructions)

BC ADD MACHI

BCL ADDI MACLH1

BL ADDV MACLO

BNC ADDX MACWHI

BNCL AND MACQLO

BRA CMP MACWU1

BTST CMPEQ MSBLO

CLRPSW CMPU MUL

JC CMPZ MULHI

JL LDI MULLO

JMP MV MULWHI

JNC NEG NULWLO

LD NOP NULWU1

LDB NOT MVFACHI

LDH OR MVFACLO

LDUB PCMPBZ MVFACMI

LDUH SLL MVTACHI

LOCK SLLI MVTACLO

MVFC SRA RAC

MVTC SRAI RACH

RTE SRL SADD

SETPSW SRLI

SC SUB

SNC SUBV

ST SUBX

STB XOR

STH

TRAP

UNLOCK

INSTRUCTION SET
2.5 Parallel Instruction Execution

Rev.0.01 Feb 05,2004 2-21

REJ09B0135-0001Z

2
2.5.4 Positions of Parallel Executed Instructions

The 16-bit instruction pairs that can be executed in parallel are limited to the following four combinations of
instruction categories.

 Left-side instruction and right-side instruction (O– and –S)
 Left-side instruction and both-side instruction (O– and OS)
 Both-side instruction and right-side instruction (OS and –S)
 Both-side instruction and both-side instruction (OS and OS)

The locations of instruction categories when 16-bit instruction pairs are executed in parallel are shown below.

 Left-side instruction (O–) located in the upper 16-bit part and the right-side instruction (–S) located in the lower
16-bit part
 Left-side instruction (O–) located in the upper 16-bit part and the both-side instruction (OS) located in the lower
16-bit part
 Both-side instruction (OS) located in the upper 16-bit part and the right-side instruction (–S) located in the lower
16-bit part
 Both-side instruction (OS) located in the upper 16-bit part and the other both-side instruction located in the lower
16-bit part

However, if a NOP instruction is located in the lower 16-bit part for the purpose of word alignment, a right-side

instruction (–S) may be located in the upper 16-bit part as an instruction pair to be executed in parallel.

0 O－ 1 －S

MSB MSB

Note: The instruction located in the lower 16-bit part of the word boundary that is to be
executed in parallel with the preceding instruction has its MSB automatically set
to 1 by the assembler.

0 O－ 1 OS

0 OS 1 －S

0 OS 1 OS

0 －S 1 NOP

Figure 2.5.3 Locations of Parallel Executable Instruction Categories

INSTRUCTION SET
2.5 Parallel Instruction Execution

Rev.0.01 Feb 05,2004 2-22

REJ09B0135-0001Z

2
2.5.5 Operand Interferences

Two parallel executed 16-bit instructions are executed independently of each other, and not sequenced in time.
When executed in parallel, the two instructions are handled as having no mutual dependency with regard to the
operand, so that they are not subject to interlock processing. Please be aware of this point when writing a program.

The value of the source operand referenced by a parallel executed instruction pair is one that was stored in the
operand immediately before the CPU started executing the instructions in parallel. For example, if in a parallel
executed instruction pair, one instruction writes to a register and the other instruction references it, the register value
that is referenced is one that was stored in the register immediately before the CPU started executing the instruction
pair in parallel. Furthermore, after the instruction pair was executed, the result is written to the register.

Note, however, that if two instructions are executed in parallel that write to the same register (collision of writes to a
register), program operation cannot be guaranteed.

(1) Examples of operand interferences in general-purpose registers

The following shows typical examples of operand interferences in general-purpose registers attributable to two
transfer instructions (MV instructions).

Example 1: MV R1,R0 || MV R2,R1

Example 2: MV R1,R0 || MV R1,R2
Note: the symbol || denotes that two instructions are executed in parallel.

In example 1, one of the two instructions in pairs writes to a register (R1) and the other references it. In this case,

R1 is assigned the value of R0. Similarly, R2 is assigned the value of R1 before assignment to R1 (i.e., the value of
R1 before the instruction “MV R1,R0” is executed).

Example 2 is an example where two instructions in the instruction pair write to the same register (collision of writes
to a register). In this case, the registers accessed for write by two MV instructions both are R1, so that the value of R1
after instruction execution is indeterminate.

(2) Examples of operand interferences in control registers

In addition to general-purpose registers, operand interferences will occur in control registers such as the PSW and
CBR that include the condition bit (C).

Example 3: When two instructions are executed successively

CMP R1,R0
BC _label

Example 4: When two instructions are executed in parallel
CMP R1,R0 || BC _label

Note: the symbol || denotes that two instructions are executed in parallel.

In example 3, the comparison instruction (CMP) is executed before the conditional branch instruction (BC) is

executed. In this case, the condition bit (C) is updated as a result of the CMP instruction executed, and the BC
instruction references this updated condition bit (C) to determine whether or not to branch.

In example 4, the CMP and the BC instructions are executed in parallel. The BC instruction references the
condition bit (C) before the CMP instruction is executed, to determine whether or not to branch. Be aware that the
condition bit (C) is referenced before it is operated on by execution of the CMP instruction. The result of the CMP
instruction executed is reflected in the condition bit (C) after parallel instruction execution.

INSTRUCTION SET
2.5 Parallel Instruction Execution

Rev.0.01 Feb 05,2004 2-23

REJ09B0135-0001Z

2
Furthermore, if two instructions are executed in parallel that will change the condition bit (C), the value of the

condition bit (C) after instruction execution becomes indeterminate as in the case of a collision of writes to a register
that occurs in general-purpose registers. Shown below are examples where the condition bit (C) becomes
indeterminate after an instruction pair is executed in parallel.

Example 5:CMP R1,R2 || ADDX R3,R4

Example 6: MVTC R1,PSW || ADDX R1,R2

Example 7: TRAP #1 || CMP R3,R4

Example 8: RTE || ADDX R3,R4
Note: the symbol || denotes that two instructions are executed in parallel.

INSTRUCTION SET
2.5 Parallel Instruction Execution

Rev.0.01 Feb 05,2004 2-24

REJ09B0135-0001Z

2

This page is blank for reasons of layout.

CHAPTER 3
CHAPTER 3INSTRUCTIONS

INSTRUCTIONS
3.1 Guide to Detailed Instruction Description

Rev.0.01 Feb 05,2004 3-2

REJ09B0135-0001Z

3
3.1 Guide to Detailed Instruction Description

The following outlines each item that is described in the detailed description of instructions in the pages to follow.

[Mnemonic]
The mnemonics of the OPSP-CPU consist of an instruction and the operand description that follows. The operand

is the target to be operated on by the instruction.

Table 3.1.1 List of Operand description

Operand

descriptionNote

Addressing mode Target to be operated on by instruction

R Register direct General-purpose register of the OPSP-CPU (R0–R15)

CR

Control register Control register of the OPSP-CPU

(CR0=PSW, CR1=CBR, CR2=SPI, CR3=SPU, CR5=EVB, CR6=BPC)

CPR

Coprocessor register Register of the coprocessor connected to the OPSP-CPU

A Accumulator Content of the OPSP-CPU accumulator (A0, A1)

@Rn Register indirect Memory content whose address is indicated by a register value

@(disp, Rn) Register relative indirect Memory content whose address is indicated by (register value) + (16-bit

constant that is sign-extended to 32 bits)

@Rn+ Register indirect +

register update

Register value incremented by 4, 2, or 1 (Memory content whose

address is indicated by a preupdate register value)

@+Rn Register indirect +

register update

Register value incremented by 4 (Memory content whose address is

indicated by an updated register value)

@－Rn Register indirect +

register update

Register value decremented by 4 (Memory content whose address is

indicated by an updated register value)

#imm Immediate Immediate value (For details on how the value is handled, refer to the

detailed description of each instruction.)

pcdisp PC relative Memory content whose address is indicated by (PC value) + (8, 16, or

24-bit displacement which is sign-extended to 32 bits and then shifted

left 2 bits).
Note: In operand descriptions “Rsrc” and “Rdest,” src and dest each represent a general-purpose register number

(0–15). In operand descriptions “CRsrc” and “CRdest,” src and dest each represent a control register number
(0–3, 5, or 6). In operand descriptions “Asrc” and “Adest,” src and dest each represent an accumulator number (0
or 1).

INSTRUCTIONS
3.1 Guide to Detailed Instruction Description

Rev.0.01 Feb 05,2004 3-3

REJ09B0135-0001Z

3
[Function]

Operation of each instruction is described by first outlining what the instruction does and then showing a C
language based description of the operation. The description of instruction operation is outlined below.

Table 3.1.2 Description of Operations (Operators)

Operator Operation performed

+ Addition (binary operator)

－ Subtraction (binary operator)

* Multiplication (binary operator)

/ Division (binary operator)

% Remainder calculation (binary operator)

++ Increment (unary operator)

- - Decrement (unary operator)

- Sign inversion (unary operator)

= Assign right side to left side (assignment operator)

+= Add left and right side variables and assign the result to left side (assignment operator)

-= Subtract right side variable from left side variable and assign the result to left side
(assignment operator)

> Greater than (relational operator)

< Smaller than (relational operator)

>= Greater than or equal (relational operator)

<= Smaller than or equal (relational operator)

== Equal (relational operator)

!= Not equal (relational operator)

&& AND (logical operator)

|| OR (logical operator)

| NOT (logical operator)

?: Create conditional expression (conditional operator)

INSTRUCTIONS
3.1 Guide to Detailed Instruction Description

Rev.0.01 Feb 05,2004 3-4

REJ09B0135-0001Z

3
Table 3.1.3 Description of Operations (Bitwise Operators)

Operator Operation performed

<< Shift the bit left

>> Shift the bit right

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive-OR (EXOR)

~ Bit inversion

Table 3.1.4 Data Types

Representation Type Signed or unsigned Bit length Range of values

char Integer Signed 8 -128 to +127

short Integer Signed 16 -32,768 to +32,767

int Integer Signed 32 -2,147,483,648 to +2,147,483,647

unsigned char Integer Unsigned 8 0 to 255

unsigned short Integer Unsigned 16 0 to 655,535

unsigned int Integer Unsigned 32 0 to 4,294,967,295

signed64bit Integer Signed 64 Signed 64-bit integer

(when operating on accumulators)

INSTRUCTIONS
3.1 Guide to Detailed Instruction Description

Rev.0.01 Feb 05,2004 3-5

REJ09B0135-0001Z

3
[Description]

The function of each instruction is detailed here. Furthermore, changes of the condition bit (C) in the PSW register
that occur as a result of execution of the instruction are described.

[EIT occurrence]
A generated EIT means an EIT event (exception, interrupt, or trap) that may occur as a result of execution of the

instruction. The EIT events that are likely to occur as a result of instruction execution include an address exception,
trap and a privileged instruction exception.

[Encoding]
A 16-bit or 32-bit instruction bit pattern is shown. In the instruction format, src and dest each represent the

corresponding register number, while imm and disp represent immediate and displacement values, respectively. (The
magnitude of the numeric value that is assigned to each bit field is determined by the field width.) For details about
the instruction format, refer to Section 2.3, “Instruction Formats,” in Chapter 2.

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-6

REJ09B0135-0001Z

3
3.2 Detailed Description of Instructions

Each instruction of the OPSP-CPU is described in detail beginning with the next page. Instructions are listed in
alphabetical order. Note that each page consists of the items described below.

3
arithmetic operation ADD Add

[Mnemonic]

ADD

Rdest,Rsrc

[Function]

Add

Rdest = Rdest + Rsrc

[Description]

ADD adds Rsrc to Rdest and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0000 dest 1010 src ADD Rdest,Rsrc

instruction name
(instruction type and
full name are in center)

instruction mnemonic

instruction function
(expression corresponds
to C language method)

instruction description
and effect on condition bit
(C)

EIT events that may
occur when this
instruction is executed

16- or 32-bit instruction
format

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-7

REJ09B0135-0001Z

3

arithmetic operation instruction ADD
Add

ADD

[Mnemonic]

ADD Rdest,Rsrc

[Function]

Add

Rdest = Rdest + Rsrc

[Description]

ADD adds Rsrc to Rdest and puts the result in Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0000 dest 1010 src ADD Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-8

REJ09B0135-0001Z

3

arithmetic operation instruction ADD3
Add 3-operand

ADD3

[Mnemonic]

ADD3 Rdest,Rsrc,#imm16

[Function]

Add

Rdest = Rsrc + (signed short) imm16;

[Description]

ADD3 adds the 16-bit immediate value to Rsrc and puts the result in Rdest. The immediate value is sign-extended

to 32 bits before the operation.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1000 dest 1010 src imm16

ADD3 Rdest,Rsrc,#imm16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-9

REJ09B0135-0001Z

3

arithmetic operation instruction ADDI
Add immediate

ADDI

[Mnemonic]

ADDI Rdest,#imm8

[Function]

Add

Rdest = Rdest + (signed char) imm8;

[Description]

ADDI adds the 8-bit immediate value to Rdest and puts the result in Rdest. The immediate value is sign-extended

to 32 bits before the operation.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0100 dest imm8 ADDI Rdest,#imm8

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-10

REJ09B0135-0001Z

3

arithmetic operation instruction ADDV
Add with overflow checking

ADDV

[Mnemonic]

ADDV Rdest,Rsrc

[Function]

Add

Rdest = (signed) Rdest + (signed) Rsrc;

C = overflow ? 1 : 0

[Description]

ADDV adds Rsrc to Rdest and puts the result in Rdest.

The condition bit (C) is set when the addition results in overflow; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

0000 dest 1000 src ADDV Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-11

REJ09B0135-0001Z

3

arithmetic operation instruction ADDV3
Add 3-operand with overflow checking

ADDV3

[Mnemonic]

ADDV3 Rdest,Rsrc,#imm16

[Function]

Add

Rdest = (signed) Rsrc+ (signed)((signed short)imm16);

C = overflow ? 1 : 0

[Description]

ADDV3 adds the 16-bit immediate value to Rsrc and puts the result in Rdest. The immediate value is

sign-extended to 32 bits before it is added to Rsrc.

The condition bit (C) is set when the addition results in overflow; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

1000 dest 1000 src imm16

ADDV3 Rdest,Rsrc,#imm16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-12

REJ09B0135-0001Z

3

arithmetic operation instruction ADDX
Add with carry

ADDX

[Mnemonic]

ADDX Rdest,Rsrc

[Function]

Add

Rdest = (unsigned) Rdest + (unsigned) Rsrc + C;

C = carry_out ? 1 : 0;

[Description]

ADDX adds Rsrc and C to Rdest, and puts the result in Rdest. The condition bit (C) is set when the addition result

cannot be represented by a 32-bit unsigned integer; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

0000 dest 1001 src ADDX Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-13

REJ09B0135-0001Z

3

logic operation instruction AND
AND

AND

[Mnemonic]

AND Rdest,Rsrc

[Function]

Logical AND

Rdest = Rdest & Rsrc;

[Description]

AND computes the logical AND of the corresponding bits of Rdest and Rsrc and puts the result in Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0000 dest 1100 src AND Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-14

REJ09B0135-0001Z

3

logic operation instruction AND3
AND 3-operand

AND3

[Mnemonic]

AND3 Rdest,Rsrc,#imm16

[Function]

Logical AND

Rdest = Rsrc & (unsigned short) imm16;

[Description]

AND3 computes the logical AND of the corresponding bits of Rsrc and the 16-bit immediate value, which is

zero-extended to 32 bits, and puts the result in Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1000 dest 1100 src imm16

AND3 Rdest,Rsrc,#imm16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-15

REJ09B0135-0001Z

3

branch instruction BC
Branch on C-bit

BC

[Mnemonic]

(1) BC pcdisp8
(2) BC pcdisp24

[Function]

Branch

(1) if (C= =1) PC = (PC & 0xfffffffc) + (((signed char) pcdisp8) << 2);

(2) if (C= =1) PC = (PC & 0xfffffffc) + (sign_extend (pcdisp24) << 2);

where

#define sign_extend(x) (((signed) ((x)<< 8)) >>8)

[Description]

BC causes a branch to the specified label when the condition bit (C) is 1.

There are two instruction formats; which allows software, such as an assembler, to decide on the better format.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0111 1100 pcdisp8 BC pcdisp8

1111 1100 pcdisp24

BC pcdisp24

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-16

REJ09B0135-0001Z

3

branch instruction BCL
Branch and link on C-bit

BCL

[Mnemonic]

(1) BCL pcdisp8
(2) BCL pcdisp24

[Function]

Branch

(1) if (C = = 1) {

 R14 = (PC & 0xfffffffc) + 4 ;

 PC = (PC & 0xfffffffc) + (((signed char) pcdisp8) << 2) ;

}

(2) if (C = = 1) {

 R14 = (PC & 0xfffffffc) + 4 ;

 PC = (PC & 0xfffffffc) + (sign_extend (pcdisp24) << 2) ;

}

where

#define sign_extend(x) (((signed) ((x) << 8)) >> 8)

[Description]

When the condition bit (C) = 1, BCL causes a branch to the specified label and store the return address in R14.

There are two instruction formats; this allows software, such as an assembler, to decide on the better format.

The condition bit (C) does not change.

[EIT occurrence]

None

[Encoding]

0111 1000 pcdisp8 BCL pcdisp8

1111 1000 pcdisp24

BCL pcdisp24

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-17

REJ09B0135-0001Z

3

bit operation instruction BCLR
Bit clear

BCLR

[Mnemonic]

BCLR #bitpos,@(disp16,Rsrc)

[Function]

Bit operation for memory contents. Set a specified bit to 0.

*(char *)(Rsrc+(signed short)disp16) &= ~(1 << (7 - bitpos));

[Description]

BCLR reads byte data in memory from the address specified by Rsrc and a 16-bit displacement and stores the

read value after changing its bit specified by bitpos to 0.

The displacement is sign-extended before address calculation. bitpos is specified for bits 0–7 where MSB = 0 and

LSB = 7. Memory is accessed in bytes.

The condition bit (C) does not change.

[EIT occurrence]

None

[Encoding]

1010 0 bitpos 0111 src disp16

BCLR #bitpos,@(disp16,Rsrc)

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-18

REJ09B0135-0001Z

3

branch instruction BEQ
Branch on equal

BEQ

[Mnemonic]

BEQ Rsrc1,Rsrc2,pcdisp16

[Function]

Branch

if (Rsrc1 = = Rsrc2) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BEQ causes a branch to the specified label when Rsrc1 is equal to Rsrc2.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1011 src1 0000 src2 pcdisp16

BEQ Rsrc1,Rsrc2,pcdisp16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-19

REJ09B0135-0001Z

3

branch instruction BEQZ
Branch on equal to zero

BEQZ

[Mnemonic]

BEQZ Rsrc,pcdisp16

[Function]

Branch

if (Rsrc = = 0) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BEQZ causes a branch to the specified label when Rsrc is equal to zero.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1011 0000 1000 src pcdisp16

BEQZ Rsrc,pcdisp16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-20

REJ09B0135-0001Z

3

branch instruction BGEZ
Branch on greater than or equal to zero

BGEZ

[Mnemonic]

BGEZ Rsrc,pcdisp16

[Function]

Branch

if ((signed) Rsrc >= 0) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BGEZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is greater than or equal

to zero.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1011 0000 1011 src pcdisp16

BGEZ Rsrc,pcdisp16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-21

REJ09B0135-0001Z

3

branch instruction BGTZ
Branch on greater than zero

BGTZ

[Mnemonic]

BGTZ Rsrc,pcdisp16

[Function]

Branch

if ((signed) Rsrc > 0) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BGTZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is greater than zero.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1011 0000 1101 src pcdisp16

BGTZ Rsrc,pcdisp16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-22

REJ09B0135-0001Z

3

branch instruction BL
Branch and link

BL

[Mnemonic]

(1) BL pcdisp8
(2) BL pcdisp24

[Function]

branch

(1) R14 = (PC & 0xfffffffc) + 4;

PC = (PC & 0xfffffffc) + (((signed char) pcdisp8) << 2);

(2) R14 = (PC & 0xfffffffc) + 4;

PC = (PC & 0xfffffffc) + (sign_extend (pcdisp24) << 2);

where

#define sign_extend(x) (((signed) ((x)<< 8)) >>8)

[Description]

BL causes an unconditional branch to the address specified by the label and puts the return address in R14.

There are two instruction formats; this allows software, such as an assembler, to decide on the better format.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0111 1110 pcdisp8 BL pcdisp8

1111 1110 pcdisp24

BL pcdisp24

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-23

REJ09B0135-0001Z

3

branch instruction BLEZ
Branch on less than or equal to zero

BLEZ

[Mnemonic]

BLEZ Rsrc,pcdisp16

[Function]

Branch

if ((signed) Rsrc <= 0) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BLEZ causes a branch to the specified label when the contents of Rsrc treated as a signed 32 bit value, is less

than or equal to zero.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1011 0000 1100 src pcdisp16

BLEZ Rsrc,pcdisp16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-24

REJ09B0135-0001Z

3

branch instruction BLTZ
Branch on less than zero

BLTZ

[Mnemonic]

BLTZ Rsrc,pcdisp16

[Function]

Branch

if ((signed) Rsrc < 0) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BLTZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is less than zero.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1011 0000 1010 src pcdisp16

BLTZ Rsrc,pcdisp16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-25

REJ09B0135-0001Z

3

branch instruction BNC
Branch on not C-bit

BNC

[Mnemonic]

(1) BNC pcdisp8
(2) BNC pcdisp24

[Function]

Branch

(1) if (C==0) PC = (PC & 0xfffffffc) + (((signed char) pcdisp8) << 2);

(2) if (C==0) PC = (PC & 0xfffffffc) + (sign_extend (pcdisp24) << 2);

where

#define sign_extend(x) (((signed) ((x)<< 8)) >>8)

[Description]

BNC causes a branch to the specified label when the condition bit (C) is 0. There are two instruction formats; this

allows software, such as an assembler, to decide on the better format.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0111 1101 pcdisp8 BNC pcdisp8

1111 1101 pcdisp24

BNC pcdisp24

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-26

REJ09B0135-0001Z

3

branch instruction BNCL
Branch and link on not C-bit

BNCL

[Mnemonic]

(1) BNCL pcdisp8
(2) BNCL pcdisp24

[Function]

Branch

(1) if (C == 0) {

 R14 = (PC & 0xfffffffc) + 4 ;

 PC = (PC & 0xfffffffc) + (((signed char) pcdisp8) << 2) ;

}

(2) if (C == 0) {

 R14 = (PC & 0xfffffffc) + 4 ;

 PC = (PC & 0xfffffffc) + (sign_extend (pcdisp24) << 2) ;

}

where

#define sign_extend(x) (((signed) ((x) << 8)) >> 8)

[Description]

When the condition bit (C) = 0, BNCL causes a branch to the specified label and stores the return address in R14.

There are two instruction formats; this allows software, such as an assembler, to decide on the better format.

The condition bit (C) does not change.

[EIT occurrence]

None

[Encoding]

0111 1001 pcdisp8 BNCL pcdisp8

1111 1001 pcdisp24

BNCL pcdisp24

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-27

REJ09B0135-0001Z

3

branch instruction BNE
Branch on not equal to

BNE

[Mnemonic]

BNE Rsrc1,Rsrc2,pcdisp16

[Function]

Branch

if (Rsrc1 != Rsrc2) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BNE causes a branch to the specified label when Rsrc1 is not equal to Rsrc2.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1011 src1 0001 src2 pcdisp16

BNE Rsrc1,Rsrc2,pcdisp16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-28

REJ09B0135-0001Z

3

branch instruction BNEZ
Branch on not equal to zero

BNEZ

[Mnemonic]

BNEZ Rsrc,pcdisp16

[Function]

Branch

if (Rsrc != 0) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BNEZ causes a branch to the specified label when Rsrc is not equal to zero.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1011 0000 1001 src pcdisp16

BNEZ Rsrc,pcdisp16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-29

REJ09B0135-0001Z

3

branch instruction BRA
Branch

BRA

[Mnemonic]

(1) BRA pcdisp8
(2) BRA pcdisp24

[Function]

Branch

(1) PC = (PC & 0xfffffffc) + (((signed char) pcdisp8) << 2);

(2) PC = (PC & 0xfffffffc) + (sign_extend (pcdisp24) << 2);

where

#define sign_extend(x) (((signed) ((x)<< 8)) >>8)

[Description]

BRA causes an unconditional branch to the address specified by the label.

There are two instruction formats; this allows software, such as an assembler, to decide on the better format.

[EIT occurrence]

None

[Encoding]

0111 1111 pcdisp8 BRA pcdisp8

1111 1111 pcdisp24

BRA pcdisp24

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-30

REJ09B0135-0001Z

3

bit operation instruction BSET
Bit set

BSET

[Mnemonic]

BSET #bitpos, @(disp16,Rsrc)

[Function]

Bit operation on memory content. Set a specified bit to 1.

*(char *)(Rsrc+(signed short)disp16) |= (1 << (7 - bitpos));

[Description]

BSET reads byte data in memory from the address specified by Rsrc and a 16-bit displacement and stores the

read value after changing its bit specified by bitpos to 1.

The displacement is sign-extended before address calculation. bitpos is specified for bits 0–7 where MSB = 0 and

LSB = 7. Memory is accessed in bytes.

[EIT occurrence]

None

[Encoding]

1010 0 bitpos 0110 src disp16

BSET #bitpos,@(disp16,Rsrc)

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-31

REJ09B0135-0001Z

3

bit operation instruction BTST
Bit test

BTST

[Mnemonic]

BTST #bitpos,Rsrc

[Function]

Bit operation to extract a specified register bit.

C = (Rsrc >> (7 - bitpos)) & 1;

[Description]

BTST extracts a bit specified by bitpos from the 8 low-order bits of Rsrc and sets it in the condition bit (C). "bitpos"

is specified for bits 0–7 where LSB = 7.

[EIT occurrence]

None

[Encoding]

0000 0 bitpos 1111 src BTST #bitpos, Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-32

REJ09B0135-0001Z

3

bit operation instruction CLRPSW
Clear PSW

CLRPSW

[Mnemonic]

CLRPSW #imm8

[Function]

Set SM, IE, PM, CE or C bit in the PSW to 0.

PSW &= ~(unsigned char) imm8 | 0x0000ff00

[Description]

Logically AND the inverse of the 8-bit value specified by imm8 with the 8 low-order bits in the PSW (bits 24–31)

bitwise and write the result to the 8 low-order bits in the PSW bit by bit.

[EIT occurrence]

Privilege instruction exception(PIE)

[Encoding]

0111 0010 imm8 CLRPSW #imm8

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-33

REJ09B0135-0001Z

3

compare instruction CMP
Compare

CMP

[Mnemonic]

CMP Rsrc1,Rsrc2

[Function]

Compare

C = ((signed) Rsrc1 < (signed) Rsrc2) ? 1:0;

[Description]

The condition bit (C) is set to 1 when Rsrc1 is less than Rsrc2. The operands are treated as signed 32-bit values.

[EIT occurrence]

None

[Encoding]

0000 src1 0100 src2 CMP Rsrc1,Rsrc2

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-34

REJ09B0135-0001Z

3

compare instruction CMPEQ
Compare equal to

CMPEQ

[Mnemonic]

CMPEQ Rsrc1,Rsrc2

[Function]

Compare

C = (Rsrc1== Rsrc2) ? 1 : 0 ;

[Description]

When Rsrc1 and Rsrc2 are equal, the condition bit (C) is set to 1.

[EIT occurrence]

None

[Encoding]

0000 src1 0110 src2 CMPEQ Rsrc1,Rsrc2

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-35

REJ09B0135-0001Z

3

compare instruction CMPI
Compare immediate

CMPI

[Mnemonic]

CMPI Rsrc,#imm16

[Function]

Compare

C = ((signed) Rsrc < (signed) ((signed short) imm16)) ? 1:0;

[Description]

The condition bit (C) is set when Rsrc is less than 16-bit immediate value. The operands are treated as signed

32-bit values. The immediate value is sign-extended to 32-bit before the operation.

[EIT occurrence]

None

[Encoding]

1000 0000 0100 src imm16

CMPI Rsrc,#imm16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-36

REJ09B0135-0001Z

3

compare instruction CMPU
Compare unsigned

CMPU

[Mnemonic]

CMPU Rsrc1,Rsrc2

[Function]

Compare

C = ((unsigned) Rsrc1 < (unsigned) Rsrc2) ? 1:0;

[Description]

The condition bit (C) is set when Rsrc1 is less than Rsrc2. The operands are treated as unsigned 32-bit values.

[EIT occurrence]

None

[Encoding]

0000 src1 0101 src2 CMPU Rsrc1,Rsrc2

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-37

REJ09B0135-0001Z

3

compare instruction CMPUI
Compare unsigned immediate

CMPUI

[Mnemonic]

CMPUI Rsrc,#imm16

[Function]

Compare

C = ((unsigned) Rsrc < (unsigned) ((signed short) imm16)) ? 1:0;

[Description]

The condition bit (C) is set when Rsrc is less than the 16-bit immediate value. The operands are treated as

unsigned 32-bit values. The immediate value is sign-extended to 32-bit before the operation.

[EIT occurrence]

None

[Encoding]

1000 0000 0101 src imm16

CMPUI Rsrc,#imm16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-38

REJ09B0135-0001Z

3

compare instruction CMPZ
Compare equal to zero

CMPZ

[Mnemonic]

CMPZ Rsrc

[Function]

Compare

C = (Rsrc == 0) ? 1 : 0;

[Description]

The condition bit (C) is set when Rsrc is zero.

[EIT occurrence]

None

[Encoding]

0000 0000 0111 src CMPZ Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-39

REJ09B0135-0001Z

3

multiply and divide instruction DIV
Divide

DIV

[Mnemonic]

DIV Rdest,Rsrc

[Function]

Signed division

Rdest = (signed) Rdest / (signed) Rsrc;

[Description]

DIV divides Rdest by Rsrc and puts the quotient in Rdest. The operands are treated as signed 32-bit values and

the result is rounded toward zero.

The condition bit (C) dose not changed.

When Rsrc is zero, Rdest dose not changed.

[EIT occurrence]

None

[Encoding]

1001 dest 0000 src 0000 0000 0000 0000

DIV Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-40

REJ09B0135-0001Z

3

multiply and divide instruction DIVB
Divide byte

DIVB

[Mnemonic]

DIVB Rdest,Rsrc

[Function]

Signed division

Rdest =(signed char)Rdest / (signed)Rsrc ;

[Description]

DIVB divides Rdest by Rsrc and store the quotient in Rdest. Of the operands of this instruction, the dividend is

handled as a signed 8-bit value, with the 24 high-order bits (bits 0–23) ignored. The divisor is handled as a signed

32-bit value, and the quotient is rounded toward zero.

The condition bit (C) does not change.

When Rsrc is zero, the value of Rdest does not change.

[EIT occurrence]

None

[Encoding]

1001 dest 0000 src 0000 0000 0001 1000

DIVB Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-41

REJ09B0135-0001Z

3

multiply and divide instruction DIVH
Divide Half-word

DIVH

[Mnemonic]

DIVH Rdest,Rsrc

[Function]

Signed division

Rdest = (signed short) Rdest / (signed) Rsrc ;

[Description]

DIVH divides Rdest by Rsrc and store the quotient in Rdest. Of the operands of this instruction, the dividend is

handled as a signed 16-bit value, with the 16 high-order bits (bits 0–15) ignored. The divisor is handled as a signed

32-bit value, and the quotient is rounded toward zero.

The condition bit (C) does not change.

When Rsrc is zero, the value of Rdest does not change.

[EIT occurrence]

None

[Encoding]

1001 dest 0000 src 0000 0000 0001 0000

DIVH Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-42

REJ09B0135-0001Z

3

multiply and divide instruction DIVU
Divide unsigned

DIVU

[Mnemonic]

DIVU Rdest,Rsrc

[Function]

Unsigned division

Rdest = (unsigned) Rdest / (unsigned) Rsrc;

[Description]

DIVU divides Rdest by Rsrc and puts the quotient in Rdest. The operands are treated as unsigned 32-bit values

and the result is rounded toward zero.

The condition bit (C) dose not changed.

When Rsrc is zero, Rdest dose not changed.

[EIT occurrence]

None

[Encoding]

1001 dest 0001 src 0000 0000 0000 0000

DIVU Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-43

REJ09B0135-0001Z

3

multiply and divide instruction DIVUB
Divide unsigned byte

DIVUB

[Mnemonic]

DIVUB Rdest,Rsrc

[Function]

Unsigned division

Rdest =(unsigned char)Rdest / (unsigned)Rsrc ;

[Description]

DIVUB divides Rdest by Rsrc and stores the quotient in Rdest.

Of the operands of this instruction, the dividend is handled as an unsigned 8-bit value, with the 24 high-order bits

(bits 0–23) ignored. The divisor is handled as an unsigned 32-bit value, and the quotient is rounded toward zero.

The condition bit (C) does not change.

When Rsrc is zero, the value of Rdest does not change.

[EIT occurrence]

None

[Encoding]

1001 dest 0001 src 0000 0000 0001 1000

DIVUB Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-44

REJ09B0135-0001Z

3

multiply and divide instruction DIVUH
Divide unsigned halfword

DIVUH

[Mnemonic]

DIVUH Rdest,Rsrc

[Function]

Unsigned division

Rdest =(unsigned short)Rdest / (unsigned)Rsrc ;

[Description]

DIVUH divides Rdest by Rsrc and stores the quotient in Rdest.

Of the operands of this instruction, the dividend is handled as an unsigned 16-bit value, with the 16 high-order bits

(bits 0–15) ignored. The divisor is handled as an unsigned 32-bit value, and the quotient is rounded toward zero.

The condition bit (C) does not change.

When Rsrc is zero, the value of Rdest does not change.

[EIT occurrence]

None

[Encoding]

1001 dest 0001 src 0000 0000 0001 0000

DIVUH Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-45

REJ09B0135-0001Z

3

branch instruction JC
Jump on C-bit

JC

[Mnemonic]

JC Rsrc

[Function]

Jump

if (C ==1)PC =Rsrc & 0xfffffffc ;

[Description]

JC causes a jump to the address specified by Rsrc when the condition bit (C) = 1.

The condition bit (C) does not change.

[EIT occurrence]

None

[Encoding]

0001 1100 1100 src JC Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-46

REJ09B0135-0001Z

3

branch instruction JL
Jump and link

JL

[Mnemonic]

JL Rsrc

[Function]

Subroutine call (register direct)

R14 = (PC & 0xfffffffc) + 4;

PC = Rsrc & 0xfffffffc;

[Description]

JL causes an unconditional jump to the address specified by Rsrc and puts the return address in R14.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0001 1110 1100 src JL Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-47

REJ09B0135-0001Z

3

branch instruction JMP
Jump

JMP

[Mnemonic]

JMP Rsrc

[Function]

Jump

PC = Rsrc & 0xfffffffc;

[Description]

JMP causes an unconditional jump to the address specified by Rsrc.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0001 1111 1100 src JMP Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-48

REJ09B0135-0001Z

3

branch instruction JNC
Jump on not C-bit

JNC

[Mnemonic]

JNC Rsrc

[Function]

Jump

if (C==0)PC =Rsrc & 0xfffffffc ;

[Description]

JNC causes a jump to the address specified by Rsrc when the condition bit (C) = 0.

The condition bit (C) does not change.

[EIT occurrence]

None

[Encoding]

0001 1101 1100 src JNC Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-49

REJ09B0135-0001Z

3

load/store instruction LD
Load

LD

[Mnemonic]

(1) LD Rdest,@Rsrc
(2) LD Rdest,@Rsrc+
(3) LD Rdest,@(disp16,Rsrc)

[Function]

Load

(1) Rdest = *(signed int *) Rsrc;

(2) Rdest = *(signed int *) Rsrc, Rsrc += 4;

(3) Rdest = *(signed int *) (Rsrc + (signed short) disp16);

[Description]

(1) The contents of the memory at the address specified by Rsrc are loaded into Rdest.

(2) The contents of the memory at the address specified by Rsrc are loaded into Rdest. Rsrc is post incremented by

4.

(3) The contents of the memory at the address specified by Rsrc combined with the 16-bit displacement are loaded

into Rdest.

The displacement value is sign-extended to 32 bits before the address calculation.

The condition bit (C) dose not changed.

[EIT occurrence]

Address exception (AE)

[Encoding]

0010 dest 1100 src LD Rdest,@Rsrc

0010 dest 1110 src LD Rdest,@Rsrc+

1010 dest 1100 src disp16

LD Rdest,@(disp16,Rsrc)

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-50

REJ09B0135-0001Z

3

transfer instruction LD24
Load 24-bit immediate

LD24

[Mnemonic]

LD24 Rdest,#imm24

[Function]

Load

Rdest = imm24 & 0x00ffffff;

[Description]

LD24 loads the 24-bit immediate value into Rdest. The immediate value is zero-extended to 32 bits.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1110 dest imm24

LD24 Rdest,#imm24

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-51

REJ09B0135-0001Z

3

load/store instruction LDB
Load byte

LDB

[Mnemonic]

(1) LDB Rdest,@Rsrc
(2) LDB Rdest,@(disp16,Rsrc)

[Function]

Load

(1) Rdest = *(signed char *) Rsrc;

(2) Rdest = *(signed char *) (Rsrc + (signed short) disp16);

[Description]

(1) LDB sign-extends the byte data of the memory at the address specified by Rsrc and loads it into Rdest.

(2) LDB sign-extends the byte data of the memory at the address specified by Rsrc combined with the 16-bit

displacement, and loads it into Rdest.

The displacement value is sign-extended to 32 bits before the address calculation.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0010 dest 1000 src LDB Rdest,@Rsrc

1010 dest 1000 src disp16

LDB Rdest,@(disp16,Rsrc)

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-52

REJ09B0135-0001Z

3

load/store instruction LDH
Load halfword

LDH

[Mnemonic]

(1) LDH Rdest,@Rsrc
(2) LDH Rdest,@(disp16,Rsrc)

[Function]

Load

(1) Rdest = *(signed short *) Rsrc;

(2) Rdest = *(signed short *) (Rsrc + (signed short) disp16);

[Description]

(1) LDH sign-extends the halfword data of the memory at the address specified by Rsrc and

(2) LDH sign-extends the halfword data of the memory at the address specified by Rsrc combined with the 16-bit

displacement, and loads it into Rdest. The displacement value is sign-extended to 32 bits before the address

calculation.

The condition bit (C) dose not changed.

[EIT occurrence]

Address exception (AE)

[Encoding]

0010 dest 1010 src LDH Rdest,@Rsrc

1010 dest 1010 src disp16

LDH Rdest,@(disp16,Rsrc)

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-53

REJ09B0135-0001Z

3

transfer instruction LDI
Load immediate

LDI

[Mnemonic]

(1) LDI Rdest,#imm8
(2) LDI Rdest,#imm16

[Function]

Load

(1) Rdest = (signed char) imm8;

(2) Rdest = (signed short) imm16;

[Description]

(1) LDI loads the 8-bit immediate value into Rdest. The immediate value is sign-extended to 32 bits.

(2) LDI loads the 16-bit immediate value into Rdest. The immediate value is sign-extended to 32 bits.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0110 dest imm8 LDI Rdest,#imm8

1001 dest 1111 0000 imm16

LDI Rdest,#imm16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-54

REJ09B0135-0001Z

3

load/store instruction LDUB
Load unsigned byte

LDUB

[Mnemonic]

(1) LDUB Rdest,@Rsrc
(2) LDUB Rdest,@(disp16,Rsrc)

[Function]

Load

(1) Rdest = *(unsigned char *) Rsrc;

(2) Rdest = *(unsigned char *) (Rsrc + (signed short) disp16);

[Description]

(1) LDUB zero-extends the byte data from the memory at the address specified by Rsrc and loads it into Rdest.

(2) LDUB zero-extends the byte data of the memory at the address specified by Rsrc combined with the 16-bit

displacement, and loads it into Rdest. The displacement value is sign-extended to 32 bits before address

calculation.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0010 dest 1001 src LDUB Rdest,@Rsrc

1010 dest 1001 src disp16

LDUB Rdest,@(disp16,Rsrc)

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-55

REJ09B0135-0001Z

3

load/store instruction LDUH
Load unsigned halfword

LDUH

[Mnemonic]

(1) LDUH Rdest,@Rsrc
(2) LDUH Rdest,@(disp16,Rsrc)

[Function]

Load

(1) Rdest = *(unsigned short *) Rsrc;

(2) Rdest = *(unsigned short *) (Rsrc + (signed short) disp16);

[Description]

(1) LDUH zero-extends the halfword data from the memory at the address specified by Rsrc and loads it into Rdest.

(2) LDUH zero-extends the halfword data in memory at the address specified by Rsrc combined with the 16-bit

displacement, and loads it into Rdest. The displacement value is sign-extended to 32 bits before the address

calculation.

The condition bit (C) dose not changed.

[EIT occurrence]

Address exception (AE)

[Encoding]

0010 dest 1011 src LDUH Rdest,@Rsrc

1010 dest 1011 src disp16

LDUH Rdest,@(disp16,Rsrc)

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-56

REJ09B0135-0001Z

3

load/store instruction LOCK
Load locked

LOCK

[Mnemonic]

LOCK Rdest,@Rsrc

[Function]

Load locked

LOCK = 1, Rdest = *(signed int *) Rsrc;

[Description]

The contents of the word at the memory location specified by Rsrc are loaded into Rdest.

The condition bit (C) dose not changed.

This instruction sets the LOCK bit in addition to simple loading. When the LOCK bit is 1, DMA transfer request or

HOLD request is not accepted.

The LOCK bit is cleared by executing the UNLOCK instruction.

The LOCK bit is internal to the CPU and cannot be accessed directly except by using the LOCK or UNLOCK

instructions.

[EIT occurrence]

Address exception (AE)

[Encoding]

0010 dest 1101 src LOCK Rdest,@Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-57

REJ09B0135-0001Z

3

DSP function instruction MACHI
Multiply-accumulate high-order halfword

MACHI

[Mnemonic]

MACHI Rsrc1,Rsrc2,Adest

[Function]

Multiply and add

Adest += ((signed) (Rsrc1 & 0xffff0000) * (signed short) (Rsrc2 >> 16) ;

[Description]

MACHI multiplies the 16 high-order bits of Rsrc1 and the 16 high-order bits of Rsrc2 together and adds the result

of multiplication to the 56 low-order bits of accumulator Adest.

However, the bit position of the multiplication result is adjusted so that its least significant bit is at bit 47 of Adest

and those that correspond to bits 8–15 of Adest are sign-extended before being added. The result of addition is

stored in Adest. The 16 high-order bits of Rsrc1 and the 16 high-order bits of Rsrc2 are handled as signed integers.

The condition bit (C) does not change.

63

16 high-order bits

16 high-order bits

 0

310

4847323116 15 87 0

Rsrc1

Rsrc2

Result of multiplication

Adest value before MACHI
instruction is executed

Adest value after MACHI
instruction is executed

Sign-extended

Sign-extended

[EIT occurrence]

None

[Encoding]

0011 src1 100 src2 MACHI Rsrc1,Rsrc2,Adest

Adest

When accumulator A0 is specified : 0

When accumulator A1 is specified : 1

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-58

REJ09B0135-0001Z

3

DSP function instruction MACLH1
Multiply-accumulate low-order halfword and

high-order halfword using accumulator 1

MACLH1

[Mnemonic]

MACLH1 Rsrc1,Rsrc2

[Function]

Multiply and Add

A1 += ((signed) (Rsrc1 << 16) * (signed short) (Rsrc2 >> 16));

[Description]

MACWLH1 multiplies the 16 low-order bits of Rsrc1 and the 16 high-order bits of Rsrc2 together and adds the

result of multiplication to the 56 low-order bits of accumulator A1.

However, the bit position of the multiplication result is adjusted so that its least significant bit is at bit 47 of A1 and

those that correspond to bits 8–15 of A1 are sign-extended before being added. The result of addition is stored in A1.

The 16 low-order bits of Rsrc1 and the 16 high-order bits of Rsrc2 are handled as signed integers.

A0 does not change as a result of execution of this instruction.

The condition bit (C) does not change.

63

 16 low-order bits

16 high-order bits

 0

310

4847323116 15 87 0

Rsrc1

Rsrc2

Result of multiplication

A1 value before MACLH1
instruction is executed

A1 value after MACLH1
instruction is executed

Sign-extended

Sign-extended

[EIT occurrence]

None

[Encoding]

0101 src1 1100 src2 MACLH1 Rsrc1,Rsrc2

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-59

REJ09B0135-0001Z

3

DSP function instruction MACLO
Multiply-accumulate low-order halfword

MACLO

[Mnemonic]

MACLO Rsrc1,Rsrc2,Adest

[Function]

Multiply and Add

Adest += ((signed) (Rsrc1 << 16) * (signed short) Rsrc2) ;

[Description]

MACLO multiplies the 16 low-order bits of Rsrc1 and the 16 low-order bits of Rsrc2 together and adds the result of

multiplication to the 56 low-order bits of accumulator Adest.

However, the bit position of the multiplication result is adjusted so that its least significant bit is at bit 47 of Adest

and those that correspond to bits 8–15 of Adest are sign-extended before being added. The result of addition is

stored in Adest. The 16 low-order bits of Rsrc1 and the 16 low-order bits of Rsrc2 are handled as signed integers.

The condition bit (C) does not change.

63

 16 low-order bits

 16 low-order bits

 0

310

4847323116 15 87 0

Rsrc1

Rsrc2

Result of multiplication

Adest value before MACLO
instruction is executed

Adest value after MACLO
instruction is executed

Sign-extended

Sign-extended

[EIT occurrence]

None

[Encoding]

0011 src1 101 src2 MACLO Rsrc1,Rsrc2,Adest

Adest

When accumulator A0 is specified : 0

When accumulator A1 is specified : 1

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-60

REJ09B0135-0001Z

3

DSP function instruction MACWHI
Multiply-accumulate word and high-order halfword

MACWHI

[Mnemonic]

MACWHI Rsrc1,Rsrc2

[Function]

Multiply and Add

A0 += ((signed) Rsrc1 * (signed short) (Rsrc2 >> 16));

[Description]

MACWHI multiplies the 32 bits of Rsrc1 and the high-order 16 bits of Rsrc2, then adds the result to the low-order

56 bits in the accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion corresponding to

bits 8 through 15 of the accumulator is sign extended before addition. The result of addition is stored in the

accumulator. The 32 bits of Rsrc1 and the high-order 16 bits of Rsrc2 are treated as signed values.

A1 does not change as a result of execution of this instruction.

The condition bit (C) dose not changed.

63

32bits

16 high-order bits

310

4847323116 15 87 0

Rsrc1

Rsrc2

Result of multiplication

A0 value before MACWHI
instruction is executed

A0 value after MACWHI
instruction is executed

Sign-extended

Sign-extended

[EIT occurrence]

None

[Encoding]

0011 src1 0110 src2 MACWHI Rsrc1,Rsrc2

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-61

REJ09B0135-0001Z

3

DSP function instruction MACWLO
Multiply-accumulate word and low-order halfword

MACWLO

[Mnemonic]

MACWLO Rsrc1,Rsrc2

[Function]

Multiply and Add

A0 += ((signed) Rsrc1 * (signed short) Rsrc2) ;

[Description]

MACWLO multiplies the 32 bits of Rsrc1 and the low-order 16 bits of Rsrc2, then adds the result to the low-order

56 bits in the accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion corresponding to

bits 8 through 15 of the accumulator is sign-extended before the addition. The result of the addition is stored in the

accumulator. The 32 bits Rsrc1 and the low-order 16 bits of Rsrc2 are treated as signed values.

A1 does not change as a result of execution of this instruction.

The condition bit (C) dose not changed.

63

32bits

 16 low-order bits

310

4847323116 15 87 0

Rsrc1

Rsrc2

Result of multiplication

A0 value before MACWLO
instruction is executed

A0 value after MACWLO
instruction is executed

Sign-extended

Sign-extended

[EIT occurrence]

None

[Encoding]

0011 src1 0111 src2 MACWLO Rsrc1,Rsrc2

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-62

REJ09B0135-0001Z

3

DSP function instruction MACWU1
Multiply-accumulate word and unsigned low-order

halfword using accumulator 1

MACWU1

[Mnemonic]

MACWU1 Rsrc1,Rsrc2

[Function]

Multiply and Add

A1 += ((signed) Rsrc1 * (unsigned short) Rsrc2);

[Description]

MACWU1 multiplies the entire content (32 bits) of Rsrc1 and the 16 low-order bits of Rsrc2 together and adds the

result of multiplication to the 56 low-order bits of accumulator A1.

However, the bit position of the multiplication result is adjusted so that its least significant bit is at the least

significant bit of A1 and those that correspond to bits 8–15 of A1 are sign-extended before being added. The result

of addition is stored in A1. The 32 bits of Rsrc1 are handled as a signed integer and the 16 low-order bits of Rsrc2

are handled as an unsigned integer

The condition bit (C) does not change.

63

32bits

 16 low-order bits

310

4847323116 15 8 7 0

Rsrc1

Rsrc2(unsigned)

Result of multiplication

A1 value before MACWU1
instruction is executed

A1 value after MACWU1
instruction is executed

Sign-extend

Sign-extended

[EIT occurrence]

None

[Encoding]

0101 src1 1011 src2 MACWU1 Rsrc1,Rsrc2

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-63

REJ09B0135-0001Z

3

DSP function instruction MSBLO
Multiply low-order halfwords and subtract

MSBLO

[Mnemonic]

MSBLO Rsrc1,Rsrc2

[Function]

Multiply and Add

A0 -= ((signed) (Rsrc1 << 16) * (signed short) Rsrc2);

[Description]

Multiply the 16 low-order bits of Rsrc1 and the 16 low-order bits of Rsrc2 together and subtract the result of

multiplication from the 56 low-order bits of accumulator A0.

However, the bit position of the multiplication result is adjusted so that its least significant bit is at bit 47 of A0 and

those that correspond to bits 8–15 of A0 are sign-extended before subtraction. The result of subtraction is stored in

A0. The 16 low-order bits of Rsrc1 and the 16 low-order bits of Rsrc2 are handled as signed integers.

A1 does not change as a result of execution of this instruction.

The condition bit (C) does not change.

63

 16 low-order bits

 0

310

4847323116 15 8 70

Rsrc1

Rsrc2

Result of multiplication

A0 value before MSBLO
instruction is executed

A0 value after MSBLO
instruction is executed

Sign-extended

Sign-extended

 16 low-order bits

[EIT occurrence]

None

[Encoding]

0101 src1 1101 src2 MSBLO Rsrc1,Rsrc2

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-64

REJ09B0135-0001Z

3

multiply and divide instruction MUL
Multiply

MUL

[Mnemonic]

MUL Rdest,Rsrc

[Function]

Multiply

{ signed64bit tmp;

tmp = (signed64bit) Rdest * (signed64bit) Rsrc;

Rdest = (signed int) tmp;

}

[Description]

MUL multiplies Rdest by Rsrc and puts the result in Rdest. The operands are treated as signed values.

The condition bit (C) dose not changed.

The contents of the accumulator are destroyed by this instruction.

[EIT occurrence]

None

[Encoding]

0001 dest 0110 src MUL Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-65

REJ09B0135-0001Z

3

DSP function instruction MULHI
Multiply high-order halfwords

MULHI

[Mnemonic]

MULHI Rsrc1,Rsrc2,Adest

[Function]

Multiply

Adest = ((signed) (Rsrc1 & 0xffff0000) * (signed short) (Rsrc2 >> 16)) ;

[Description]

MULHI multiplies the 16 high-order bits of Rsrc1 and the 16 high-order bits of Rsrc2 together and stores the result

in accumulator Adest.

However, the bit position of the multiplication result is adjusted so that its least significant bit is at bit 47 of Adest

and those that correspond to bits 0–15 of Adest are sign-extended. Furthermore, the bits 48–63 of Adest are cleared

to 0. The 16 high-order bits of Rsrc1 and the 16 high-order bits of Rsrc2 are handled as signed integers.

The condition bit (C) does not change.

63

16 high-order bits

16 high-order bits

 0

310

4847323116 15 0

Rsrc1

Rsrc2

Adest value after MULHI
instruction is executed

Sign-extended

[EIT occurrence]

None

[Encoding]

0011 src1 000 src2 MULHI Rsrc1,Rsrc2,Adest

Adest

When accumulator A0 is specified : 0

When accumulator A1 is specified : 1

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-66

REJ09B0135-0001Z

3

DSP function instruction MULLO
Multiply low-order halfwords

MULLO

[Mnemonic]

MULLO Rsrc1,Rsrc2,Adest

[Function]

Multiply

Adest = ((signed) (Rsrc1 << 16) * (signed short) Rsrc2) ;

[Description]

MULLO multiplies the 16 low-order bits of Rsrc1 and the 16 low-order bits of Rsrc2 together and stores the result

in accumulator Adest.

However, the bit position of the multiplication result is adjusted so that its least significant bit is at bit 47 of Adest

and those that correspond to bits 0–15 of Adest are sign-extended. Furthermore, the bits 48–63 of Adest are cleared

to 0. The 16 low-order bits of Rsrc1 and the 16 low-order bits of Rsrc2 are handled as signed integers.

The condition bit (C) does not change.

63

 16 low-order bits

 16 low-order bits

 0

310

4847323116 15 0

Rsrc1

Rsrc2

Adest value after MULLO
instruction is executed

Sign-extended

[EIT occurrence]

None

[Encoding]

0011 src1 001 src2 MULLO Rsrc1,Rsrc2,Adest

Adest

When accumulator A0 is specified : 0

When accumulator A1 is specified : 1

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-67

REJ09B0135-0001Z

3

DSP function instruction MULWHI
Multiply word and high-order halfword

MULWHI

[Mnemonic]

MULWHI Rsrc1,Rsrc2

[Function]

Multiply

A0 = ((signed) Rsrc1 * (signed short) (Rsrc2 >> 16));

[Description]

MULWHI multiplies the 32 bits of Rsrc1 and the high-order 16 bits of Rsrc2, and stores the result in the

accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion corresponding to

bits 0 through 15 of the accumulator is sign-extended. The 32 bits of Rsrc1 and high-order 16 bits of Rsrc2 are

treated as signed values.

A1 does not change as a result of execution of this instruction.

The condition bit (C) does not change.

63

32bits

16 high-order bits

310

4847323116 15 0

Rsrc1

Rsrc2

A0 value after MULWHI
instruction is executed

Sign-extended

[EIT occurrence]

None

[Encoding]

0011 src1 0010 src2 MULWHI Rsrc1,Rsrc2

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-68

REJ09B0135-0001Z

3

DSP function instruction MULWLO
Multiply word and low-order halfword

MULWLO

[Mnemonic]

MULWLO Rsrc1,Rsrc2

[Function]

Multiply

A0 = ((signed) Rsrc1 * (signed short) Rsrc2);

[Description]

MULWLO multiplies the 32 bits of Rsrc1 and the low-order 16 bits of Rsrc2, and stores the result in the

accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion corresponding to

bits 0 through 15 of the accumulator is sign extended. The 32 bits of Rsrc1 and low-order 16 bits of Rsrc2 are

treated as signed values.

A1 does not change as a result of execution of this instruction.

The condition bit (C) does not change.

63

32bits

 16 low-order bits

310

4847323116 15 0

Rsrc1

Rsrc2

A0 value after MULWLO
instruction is executed

Sign-extended

[EIT occurrence]

None

[Encoding]

0011 src1 0011 src2 MULWLO Rsrc1,Rsrc2

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-69

REJ09B0135-0001Z

3

DSP function instruction MULWU1
Multiply word and unsigned low-order halfword

unsigned accumulator 1

MULWU1

[Mnemonic]

MULWU1 Rsrc1,Rsrc2

[Function]

Multiply

A1 = ((signed) Rsrc1 * (unsigned short) Rsrc2);

[Description]

MULWU1 multiplies the entire content (32 bits) of Rsrc1 and the 16 low-order bits of Rsrc2 together and stores the

result in accumulator A1.

However, the bit position of the multiplication result is adjusted so that its least significant bit is at the least

significant bit of A1 and those that correspond to bits 0–15 of A1 are sign-extended. The 32 bits of Rsrc1 are

handled as a signed integer and the 16 low-order bits of Rsrc2 are handled as an unsigned integer.

The condition bit (C) does not change.

63

32bits

 16 low-order bits

310

4847323116 15 0

Rsrc1

Rsrc2 (unsigned)

A1 value after MULWU1
instruction is executed

Sign-extended

[EIT occurrence]

None

[Encoding]

0101 src1 1010 src2 MULWU1 Rsrc1,Rsrc2

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-70

REJ09B0135-0001Z

3

transfer instruction MV
Move register

MV

[Mnemonic]

MV Rdest,Rsrc

[Function]

Transfer

Rdest = Rsrc;

[Description]

MV moves Rsrc to Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0001 dest 1000 src MV Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-71

REJ09B0135-0001Z

3

DSP function instruction MVFACHI
Move from accumulator high-order word

MVFACHI

[Mnemonic]

MVFACHI Rdest,Asrc

[Function]

Transfer from accumulator to register

Rdest = (signed) (Asrc >> 32);

[Description]

MVFACHI moves the high-order 32 bits of the accumulator Asrc to Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0101 dest 1111 00 MVFACHI Rdest,Asrc

Asrc

When accumulator A0 is specified : 00

When accumulator A1 is specified : 01

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-72

REJ09B0135-0001Z

3

DSP function instruction MVFACLO
Move from accumulator low-order word

MVFACLO

[Mnemonic]

MVFACLO Rdest,Asrc

[Function]

Transfer from accumulator to register

Rdest = (signed) Asrc;

[Description]

MVFACLO moves the low-order 32 bits of the accumulator Asrc to Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0101 dest 1111 01 MVFACLO Rdest,Asrc

Asrc

When accumulator A0 is specified : 00

When accumulator A1 is specified : 01

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-73

REJ09B0135-0001Z

3

DSP function instruction MVFACMI
Move middle-order word from accumulator

MVFACMI

[Mnemonic]

MVFACMI Rdest,Asrc

[Function]

Transfer from accumulator to register

Rdest = (signed) (Asrc >> 16);

[Description]

MVFACMI moves bits16 through 47 of the accumulator Asrc to Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0101 dest 1111 10 MVFACMI Rdest,Asrc

Asrc

When accumulator A0 is specified : 00

When accumulator A1 is specified : 01

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-74

REJ09B0135-0001Z

3

transfer instruction MVFC
Move from control register

MVFC

[Mnemonic]

MVFC Rdest,CRsrc

[Function]

Transfer from control register to register

Rdest = CRsrc ;

[Description]

MVFC moves CRsrc to Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0001 dest 1001 src MVFC Rdest,CRsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-75

REJ09B0135-0001Z

3

Coprocessor support instruction MVFCP
Move from Coprocessor register

MVFCP

[Mnemonic]

MVFCP Rdest,CPRsrc,inst,cpid

[Function]

Transfer

Rdest = CPRsrc(num);

[Description]

MVFCP moves the content of CPRsrc register of the coprocessor specified by the coprocessor ID(cpid) to Rdest.

The bit field “inst” is provided for operation bits passed to the coprocessor. If additional processing needs to be

performed while transferring data to the coprocessor, the necessary direction can be given to the coprocessor by

setting this bit field.

The condition bit (C) does not change.

[EIT occurrence]

Coprocessor interrupt (CPI) or coprocessor disable exception (CDE)

[Encoding]

1101 dest 0101 src cpid 0000 inst

MVFCP Rdest,CPRsrc,inst,cpid

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-76

REJ09B0135-0001Z

3

DSP function instruction MVTACHI
Move high-order word to accumulator

MVTACHI

[Mnemonic]

MVTACHI Rsrc,Adest

[Function]

Transfer between accumulator and register

Adest[0 : 31] = Rsrc ;

[Description]

MVTACHI moves the content of Rsrc to the 32 high-order bits (bits 0–31) of accumulator Adest.

The condition bit (C) does not change.

[EIT occurrence]

None

[Encoding]

0101 src 0111 00 MVTACHI Rsrc,Adest

Adest
When accumulator A0 is specified : 00

When accumulator A1 is specified : 01

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-77

REJ09B0135-0001Z

3

DSP function instruction MVTACLO
Move low-order word to accumulator

MVTACLO

[Mnemonic]

MVTACLO Rsrc,Adest

[Function]

Transfer between accumulator and register

Adest [32 : 63] = Rsrc ;

[Description]

MVTACLO moves the content of Rsrc to the 32 low-order bits (bits 32–63) of accumulator Adest.

The condition bit (C) does not change.

[EIT occurrence]

None

[Encoding]

0101 src 0111 01 MVTACLO Rsrc,Adest

Adest

When accumulator A0 is specified : 00

When accumulator A1 is specified : 01

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-78

REJ09B0135-0001Z

3

transfer instruction MVTC
Move to control register

MVTC

[Mnemonic]

MVTC Rsrc,CRdest

[Function]

Transfer from register to control register

CRdest = Rsrc ;

[Description]

MVTC moves Rsrc to CRdest.

If PSW(CR0) is specified as CRdest, the condition bit (C) is changed; otherwise it dose not changed.

[EIT occurrence]

Privilege instruction exception(PIE)

[Encoding]

0001 dest 1010 src MVTC Rsrc,CRdest

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-79

REJ09B0135-0001Z

3

Coprocessor support instruction MVTCP
Move to Coprocessor register

MVTCP

[Mnemonic]

MVTCP Rsrc,CPRdest,inst,cpid

[Function]

Transfer

CPRdest(num) = Rsrc;

[Description]

MVTCP moves the content of Rsrc register to CPRdest register of the coprocessor specified by the coprocessor

ID(cpid).

The bit field “inst” is provided for operation bits passed to the coprocessor. If additional processing needs to be

performed while transferring data to the coprocessor, the necessary direction can be given to the coprocessor by

setting this bit field.

The condition bit (C) does not change.

[EIT occurrence]

Coprocessor interrupt (CPI) or coprocessor disable exception (CDE)

[Encoding]

1101 src 0110 dest cpid 0000 inst

MVTCP Rsrc,CPRdest,inst,cpid

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-80

REJ09B0135-0001Z

3

arithmetic operation instruction NEG
Negate

NEG

[Mnemonic]

NEG Rdest,Rsrc

[Function]

Negate

Rdest = 0 - (signed) Rsrc ;

[Description]

NEG negates (changes the sign of) Rsrc treated as a signed 32-bit value, and puts the result in Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0000 dest 0011 src NEG Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-81

REJ09B0135-0001Z

3

branch instruction NOP
No operation

NOP

[Mnemonic]

NOP

[Function]

No operation

/* */

[Description]

NOP performs no operation. The subsequent instruction then processed.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0111 0000 0000 0000 NOP

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-82

REJ09B0135-0001Z

3

logic operation instruction NOT
Logical NOT

NOT

[Mnemonic]

NOT Rdest,Rsrc

[Function]

Logical NOT

Rdest = ~Rsrc ;

[Description]

NOT inverts each of the bits of Rsrc and puts the result in Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0000 dest 1011 src NOT Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-83

REJ09B0135-0001Z

3

logic operation instruction OR
OR

OR

[Mnemonic]

OR Rdest,Rsrc

[Function]

Logical OR

Rdest = Rdest | Rsrc ;

[Description]

OR computes the logical OR of the corresponding bits of Rdest and Rsrc, and puts the result in Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0000 dest 1110 src OR Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-84

REJ09B0135-0001Z

3

logic operation instruction OR3
OR 3-operand

OR3

[Mnemonic]

OR3 Rdest,Rsrc,#imm16

[Function]

Logical OR

Rdest = Rsrc | (unsigned short) imm16 ;

[Description]

OR3 computes the logical OR of the corresponding bits of Rsrc and the 16-bit immediate value, which is

zero-extended to 32 bits, and puts the result in Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1000 dest 1110 src imm16

OR3 Rdest,Rsrc,#imm16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-85

REJ09B0135-0001Z

3

Coprocessor support instruction OPECP
Operate Coprocessor

OPECP

[Mnemonic]

OPECP CPRdest,CPRsrc,inst,cpid

[Function]

Coprocessor operation

CPRdest = inst(CPRdest,CPRsrc)(cpid);

[Description]

OPECP executes the coprocessor instruction specified by "inst" to the coprocessor is specified by coprocessor

ID(cpid) and moves the result to CPRdest.

The condition bit (C) does not change.

[EIT occurrence]

Coprocessor interrupt (CPI) or coprocessor disable exception (CDE)

[Encoding]

1101 CPdest 0111 CPsrc cpid 0000 inst

OPECP CPRdest,CPRsrc,inst,cpid

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-86

REJ09B0135-0001Z

3

compare instruction PCMPBZ
Parallel compare byte to zero

PCMPBZ

[Mnemonic]

PCMPBZ Rsrc

[Function]

Compare

C =(((Rsrc[0:7] ==0) | | (Rsrc[8:15] ==0)| |(Rsrc[16:23] ==0)| | (Rsrc[24:31] ==0)) ? 1 :0)

[Description]

Rsrc is assumed to be consisting of four packed 8-bit data. When one of these four 8-bit data = 0, the condition bit

(C) is set to 1.

[EIT occurrence]

None

[Encoding]

0000 0011 0111 src PCMPBZ Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-87

REJ09B0135-0001Z

3

DSP function instruction RAC
Round accumulator

RAC

[Mnemonic]

RAC Adest,Asrc,#imm1

[Function]

Round

{ signed64bit tmp;

 tmp = (signed64bit)Asrc << imm1;

 tmp = tmp + 0x0000 0000 0000 8000;

 if (tmp > (signed64bit) 0x0000 7fff ffff 0000)

 Adest = 0x0000 7fff ffff 0000;

 else if (tmp < (signed64bit) 0xffff 8000 0000 0000)

 Adest = 0xffff 8000 0000 0000;

 else

 Adest = tmp & 0xffff ffff ffff 0000;

}

(imm1 = 1, 2;)

[Description]

RAC rounds the contents in the accumulator to word size and stores the result in the accumulator.

The condition bit (C) does not change.

[EIT occurrence]

None

[Encoding]

0101 00 1001 0 RAC Adest,Asrc,#imm1

imm1

Asrc

Adest

When value 1 is specified : 0

When value 2 is specified : 1

When accumulator A0 is specified : 00

When accumulator A1 is specified : 01

When accumulator A0 is specified : 00

When accumulator A1 is specified : 01

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-88

REJ09B0135-0001Z

3
[Supplementary explanation]

The RAC instruction is executed following a procedure similar to the one described below.

 Procedure 1

63

4847323116150

Sign-extended
virtual bits 0–7

63 4847323116150

8

8

Shifted 1 or 2 bits to the left

 Procedure 2

The accumulator value changes according to a 64-bit value consisting of virtual bits 0–7 in which the 1 or 2-bit
shift is reflected plus the left-shifted bits 8–63.

Sign-extended

0 8
00 00 7FFF FFFF 0000

48
8

 0
63

47

480 8
 0

63

No carry occurs if bit 48 = 0.
A carry occurs if bit 48 = 1.
Bits 48–63 are cleared to 0.

63

0 8
FF FF 8000 0000 0000

63

0000 7FFF FFFE 8000
0000 7FFF FFFE 7FFF

0000 0000 0000 0000

FFFF 8000 0000 8000
FFFF 8000 0000 7FFF

･
･
･･

･
･
･･

･
･
･･
･･
･･
･･
･･

･
･
･･
･･
･･
･･
･･

0 8

634832 16

Positive
value

Negative
value

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-89

REJ09B0135-0001Z

3

DSP function instruction RACH
Round accumulator halfword

RACH

[Mnemonic]

RACH Adest,Asrc,#imm1
[Function]

Round

{ signed64bit tmp;

 tmp = (signed64bit)Asrc << imm1;

 tmp = tmp + 0x0000 0000 8000 0000;

 if(tmp > (signed64bit) 0x0000 7fff 0000 0000)

 Adest = 0x0000 7fff 0000 0000;

 else if (tmp < (signed64bit) 0xffff 8000 0000 0000)

 Adest = 0xffff 8000 0000 0000;

 else

 Adest = tmp & 0xffff ffff 0000 0000;

}

(imm1 = 1, 2;)

[Description]

RAC rounds the accumulator value to a halfword size and store the result in the accumulator.

The condition bit (C) does not change.

[EIT occurrence]

None

[Encoding]

0101 00 1000 0 RACH Adest,Asrc,#imm1

imm1

Asrc

Adest

When value 1 is specified : 0

When value 2 is specified : 1

When accumulator A0 is specified : 00

When accumulator A1 is specified : 01

When accumulator A0 is specified : 00

When accumulator A1 is specified : 01

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-90

REJ09B0135-0001Z

3
[Supplementary explanation]

The RACH instruction is executed following a procedure similar to the one described below.

 Procedure 1

63

4847323116150

Sign-extended
virtual bits 0–7

63 4847323116150

8

8

Shifted 1 or 2 bits to the left

 Procedure 2

The accumulator value changes according to a 64-bit value consisting of the left-shifted bits 8–63 plus virtual
bits 0–7 in which the value of 1 or 2 shifted out bits is reflected.

Sign-extended

0 8
00 00 7FFF 0000 0000

8
 0 0

63

0 8
 0 0

63

No carry occurs if bit 32 = 0.
A carry occurs if bit 32 = 1
Bits 32–63 are cleared to 0.

63

0 8
FF FF 8000 0000 0000

63

0000 7FFF 8000 0000
0000 7FFF FFFF FFFF

0000 0000 0000 0000

FFFF 8000 8000 0000
FFFF 8000 7FFF FFFF

･
･
･･

･
･
･･

･
･
･･
･･
･･
･･
･･

･
･
･･
･･
･･
･･
･･

0 8

634832 16

Positive
value

Negative
value

3231

32

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-91

REJ09B0135-0001Z

3

multiply and divide instruction REM
Remainder

REM

[Mnemonic]

REM Rdest,Rsrc

[Function]

Signed remainder

Rdest = (signed) Rdest % (signed) Rsrc ;

[Description]

REM divides Rdest by Rsrc and stores the remainder in Rdest. The operands are treated as signed 32-bit values.

The quotient is rounded toward zero and the remainder takes the same sign as the dividend.

The condition bit (C) does not change.

When Rsrc is zero, the value of Rdest does not change.

[EIT occurrence]

None

[Encoding]

1001 dest 0010 src 0000 0000 0000 0000

REM Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-92

REJ09B0135-0001Z

3

multiply and divide instruction REMB
Remainder byte

REMB

[Mnemonic]

REMB Rdest,Rsrc

[Function]

Signed remainder

Rdest =(signed char)Rdest % (signed)Rsrc ;

[Description]

REMB divides Rdest by Rsrc and stores the remainder in Rdest. Of the operands of this instruction, the dividend

is handled as a signed 8-bit value, with the 24 high-order bits (bits 0–23) ignored. The divisor is handled as a signed

32-bit value. The quotient is rounded toward 0, and the remainder takes the same sign as the divisor.

The condition bit (C) does not change.

When Rsrc is zero, the value of Rdest does not change.

[EIT occurrence]

None

[Encoding]

1001 dest 0010 src 0000 0000 0001 1000

REMB Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-93

REJ09B0135-0001Z

3

multiply and divide instruction REMH
Remainder halfword

REMH

[Mnemonic]

REMH Rdest,Rsrc

[Function]

Signed remainder

Rdest =(signed short)Rdest % (signed)Rsrc ;

[Description]

REMH divides Rdest by Rsrc and stores the remainder in Rdest. Of the operands of this instruction, the dividend

is handled as a signed 16-bit value, with the 16 high-order bits (bits 0–15) ignored. The divisor is handled as a

signed 32-bit value. The quotient is rounded toward 0, and the remainder takes the same sign as the divisor.

The condition bit (C) does not change.

When Rsrc is zero, the value of Rdest does not change.

[EIT occurrence]

None

[Encoding]

1001 dest 0010 src 0000 0000 0001 0000

REMH Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-94

REJ09B0135-0001Z

3

multiply and divide instruction REMU
Remainder unsigned

REMU

[Mnemonic]

REMU Rdest,Rsrc

[Function]

Unsigned remainder

Rdest = (unsigned) Rdest % (unsigned) Rsrc ;

[Description]

REMU divides Rdest by Rsrc and stores the remainder in Rdest. The operands are treated as unsigned 32-bit

values.

The condition bit (C) does not changed.

When Rsrc is zero, Rdest does not changed.

[EIT occurrence]

None

[Encoding]

1001 dest 0011 src 0000 0000 0000 0000

REMU Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-95

REJ09B0135-0001Z

3

multiply and divide instruction REMUB
Remainder unsigned byte

REMUB

[Mnemonic]

REMUB Rdest,Rsrc

[Function]

Unsigned remainder

Rdest =(unsigned char)Rdest % (unsigned)Rsrc ;

[Description]

REMUB divides Rdest by Rsrc and stores the remainder in Rdest. Of the operands of this instruction, the dividend

is handled as an unsigned 8-bit value, with the 24 high-order bits (bits 0–23) ignored. The divisor is handled as an

unsigned 32-bit value.

The condition bit (C) does not change.

When Rsrc is zero, the value of Rdest does not change.

[EIT occurrence]

None

[Encoding]

1001 dest 0011 src 0000 0000 0001 1000

REMUB Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-96

REJ09B0135-0001Z

3

multiply and divide instruction REMUH
Remainder unsigned halfword

REMUH

[Mnemonic]

REMUH Rdest,Rsrc

[Function]

Unsigned remainder

Rdest =(unsigned short)Rdest % (unsigned)Rsrc ;

[Description]

REMUB divides Rdest by Rsrc and stores the remainder in Rdest. Of the operands of this instruction, the dividend

is handled as an unsigned 16-bit value, with the 16 high-order bits (bits 0–15) ignored. The divisor is handled as an

unsigned 32-bit value.

The condition bit (C) does not change.

When Rsrc is zero, the value of Rdest does not change.

[EIT occurrence]

None

[Encoding]

1001 dest 0011 src 0000 0000 0001 0000

REMUH Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-97

REJ09B0135-0001Z

3

EIT-related instruction RTE
Return from EIT

RTE

[Mnemonic]

RTE

[Function]

Return from EIT handler

SM = BSM ;

IE = BIE ;

PM = BPM

CE = BCE

C = BC ;

PC = BPC & 0xfffffffe ;

[Description]

Restore the SM, IE, PM, CE and C bits of the PSW register from the respective backup bits BSM, BIE, BPM, BCE

and C, and branch to the address indicated by BPC.

[EIT occurrence]

Privilege instruction exception(PIE)

[Encoding]

0001 0000 1101 0110 RTE

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-98

REJ09B0135-0001Z

3

DSP function instruction SADD
Add accumulators

SADD

[Mnemonic]

SADD

[Function]

Add

A0 = ((signed) A0 + (signed) ((signed) A1 >> 16));

[Description]

SADD adds accumulator A0 and accumulator A1 that have been arithmetically shifted 16 bits right and stores the

result in A0.

The values of A0 and A1 that have been shifted 16 bits right are handled as signed integers.

The accumulator A1 does not change as a result of execution of this instruction.

The condition bit (C) does not change.

63

4847323116 15 0

A0

A1 >> 16

Value of A0 after SADD
instruction is executed

Sign-extended

Sign-extended

63

4847323116 15 0

8 7

8 7

[EIT occurrence]

None

[Encoding]

0101 0000 1110 0100 SADD

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-99

REJ09B0135-0001Z

3

DSP function instruction SATB
Saturate word into Byte

SATB

[Mnemonic]

SATB Rdest,Rsrc

[Function]

Saturation processing

{

if ((signed char) 0x7f <= (signed) Rsrc)

 Rdest = 0x0000007f;

else if ((signed) Rsrc <= (signed char) 0x80;)

 Rdest = 0xffffffff80;

else

 Rdest = Rsrc;

};

[Description]

SATB rounds the value of Rsrc to a byte size (saturation processing) and stores the result in Rdest.

The condition bit (C) does not change.

[EIT occurrence]

None

[Encoding]

1000 dest 0110 src 0000 0011 0000 0000

SATB Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-100

REJ09B0135-0001Z

3
[Supplementary explanation]

The value of Rdest changes according to the value of Rsrc.

0000 007F
0000 007E

0000 0000

FFFF FF81
FFFF FF80

･
･
･･

･
･
･･

･
･
･･
･･
･･
･･
･･

･
･
･･
･･
･･
･･
･･

0

Positive
value

Negative
value

Rdest

31

0
00 00 7F 00

31

0

31

0
FF FF 80 FF

31

7FFF FFFF

8000 0000

Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-101

REJ09B0135-0001Z

3

DSP function instruction SATH
Saturate word into Half-word

SATH

[Mnemonic]

SATH Rdest,Rsrc

[Function]

Saturation processing

{

if ((signed short) 0x7fff <= (signed) Rsrc)

 Rdest = 0x00007fff;

else if ((signed) Rsrc <= (signed short) 0x8000)

 Rdest = 0xffff8000;

else

 Rdest = Rsrc;

}

[Description]

SATH rounds the value of Rsrc to a halfword size (saturation processing) and stores the result in Rdest.

The condition bit (C) does not change.

[EIT occurrence]

None

[Encoding]

1000 dest 0110 src 0000 0010 0000 0000

SATH Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-102

REJ09B0135-0001Z

3
[Supplementary explanation]

The value of Rdest changes according to the value of Rsrc.

0000 7FFF
0000 7FFE

0000 0000

FFFF 8001
FFFF 8000

･
･
･･

･
･
･･

･
･
･･
･･
･･
･･
･･

･
･
･･
･･
･･
･･
･･

0

Positive
value

Negative
value

Rdest

31

0
7FFF 0000

31

0

31

0
8000 FFFF

31

7FFF FFFF

8000 0000

Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-103

REJ09B0135-0001Z

3

branch SC
Skip on C-bit

SC

[Mnemonic]

SC

[Function]

Conditional skip

if (C ==1)Cancel parallel execution of the next 16-bit instruction ;

[Description]

When the condition bit (C) = 1, cancel the 16-bit instruction to be executed at the same time and skip to the next

instruction.

This instruction is used for conditional execution of another instruction to be executed in parallel with it (executed

when C = 0), and is effective for only parallel instruction execution.

However, A combination of 16-bit instructions that can be executed simultaneously with the SC instruction is

both-side instructions(OS) and right-side instructions(-S).

[EIT occurrence]

None

[Encoding]

0111 0100 0000 0001 SC

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-104

REJ09B0135-0001Z

3

bit operation instruction SETPSW
Set PSW

SETPSW

[Mnemonic]

SETPSW #imm8

[Function]

Set SM, IE, PM, CE or C bit in the PSW to 1.

PSW |= (unsigned char) imm8;

[Description]

Logically OR the 8-bit value specified by imm8 with the 8 low-order bits in the PSW (bits 24–31) bitwise and write

the result to the 8 low-order bits in the PSW bit by bit.

Make sure that all of the unsupported PWS bits in the microcomputer used are set to 0.

[EIT occurrence]

Privilege instruction exception(PIE)

[Encoding]

0111 0001 imm8 SETPSW #imm8

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-105

REJ09B0135-0001Z

3

transfer instruction SETH
Set high-order 16-bit

SETH

[Mnemonic]

SETH Rdest,#imm16

[Function]

Transfer instruction

Rdest = (signed short) imm16 << 16 ;

[Description]

SETH loads the immediate value into the 16 most significant bits of Rdest.

The 16 least significant bits become zero.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1101 dest 1100 0000 imm16

SETH Rdest,#imm16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-106

REJ09B0135-0001Z

3

shift instruction SLL
Shift left logical

SLL

[Mnemonic]

SLL Rdest,Rsrc

[Function]

Logical left shift

Rdest = Rdest << (Rsrc & 31) ;

[Description]

SLL left logical-shifts the contents of Rdest by the number specified by Rsrc, shifting zeroes into the least

significant bits.

Only the five least significant bits of Rsrc are used.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0001 dest 0100 src SLL Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-107

REJ09B0135-0001Z

3

shift instruction SLL3
Shift left logical 3-operand

SLL3

[Mnemonic]

SLL3 Rdest,Rsrc,#imm16

[Function]

Logical left shift

Rdest = Rsrc << (imm16 & 31) ;

[Description]

SLL3 left logical-shifts the contents of Rsrc into Rdest by the number specified by the 16-bit immediate value,

shifting zeroes into the least significant bits.

Only the five least significant bits of the 16-bit immediate value are used.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1001 dest 1100 src imm16

SLL3 Rdest,Rsrc,#imm16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-108

REJ09B0135-0001Z

3

shift instruction SLLI
Shift left logical immediate

SLLI

[Mnemonic]

SLLI Rdest,#imm5

[Function]

Logical left shift

Rdest = Rdest << imm5 ;

[Description]

SLLI left logical-shifts the contents of Rdest by the number specified by the 5-bit immediate value, shifting zeroes

into the least significant bits.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0101 dest 010 imm5 SLLI Rdest,#imm5

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-109

REJ09B0135-0001Z

3

branch SNC
Skip on not C- bit

SNC

[Mnemonic]

SNC

[Function]

Conditional skip

if (C ==0)Cancel parallel execution of the next 16- bit instruction ;

[Description]

When the condition bit (C) = 0, cancel the 16-bit instruction to be executed at the same time and skip to the next

instruction.

This instruction is used for conditional execution of another instruction to be executed in parallel with it (executed

when C = 1), and is effective for only parallel instruction execution.

However, A combination of 16-bit instructions that can be executed simultaneously with the SNC instruction is

both-side instructions(OS) and right-side instructions(-S).

[EIT occurrence]

None

[Encoding]

0111 0101 0000 0001 SNC

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-110

REJ09B0135-0001Z

3

shift instruction SRA
Shift right arithmetic

SRA

[Mnemonic]

SRA Rdest,Rsrc

[Function]

Arithmetic right shift

Rdest = (signed) Rdest >> (Rsrc & 31) ;

[Description]

SRA right arithmetic-shifts the contents of Rdest by the number specified by Rsrc, replicates the sign bit in the

MSB of Rdest and puts the result in Rdest.

Only the five least significant bits are used.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0001 dest 0010 src SRA Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-111

REJ09B0135-0001Z

3

shift instruction SRA3
Shift right arithmetic 3-operand

SRA3

[Mnemonic]

SRA3 Rdest,Rsrc,#imm16

[Function]

Arithmetic right shift

Rdest = (signed) Rsrc >> (imm16 & 31) ;

[Description]

SRA3 right arithmetic-shifts the contents of Rsrc into Rdest by the number specified by the 16-bit immediate value,

replicates the sign bit in Rsrc and puts the result in Rdest.

Only the five least significant bits are used.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1001 dest 1010 src imm16

SRA3 Rdest,Rsrc,#imm16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-112

REJ09B0135-0001Z

3

shift instruction SRAI
Shift right arithmetic immediate

SRAI

[Mnemonic]

SRAI Rdest,#imm5

[Function]

Logical right shift

Rdest = (signed) Rdest >> imm5 ;

[Description]

SRAI right arithmetic-shifts the contents of Rdest by the number specified by the 5-bit immediate value, replicates

the sign bit in MSB of Rdest and puts the result in Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0101 dest 001 imm5 SRAI Rdest,#imm5

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-113

REJ09B0135-0001Z

3

shift instruction SRL
Shift right logical

SRL

[Mnemonic]

SRA Rdest,Rsrc

[Function]

Logical right shift

Rdest = (unsigned) Rdest >> (Rsrc & 31) ;

[Description]

SRL right logical-shifts the contents of Rdest by the number specified by Rsrc, shifts zeroes into the most

significant bits and puts the result in Rdest.

Only the five least significant bits of Rsrc are used.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0001 dest 0000 src SRL Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-114

REJ09B0135-0001Z

3

shift instruction SRL3
Shift right logical 3-operand

SRL3

[Mnemonic]

SRL3 Rdest,Rsrc,#imm16

[Function]

Logical right shift

Rdest = (unsigned) Rsrc >> (imm16 & 31) ;

[Description]

SRL3 right logical-shifts the contents of Rsrc into Rdest by the number specified by the 16-bit immediate value,

shifts zeroes into the most significant bits. Only the five least significant bits of the immediate value are valid.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1001 dest 1000 src imm16

SRL3 Rdest,Rsrc,#imm16

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-115

REJ09B0135-0001Z

3

shift instruction SRLI
Shift right logical immediate

SRLI

[Mnemonic]

SRLI Rdest,#imm5

[Function]

Logical right shift

Rdest = (unsigned) Rdest >> (imm5 & 31) ;

[Description]

SRLI right arithmetic-shifts Rdest by the number specified by the 5-bit immediate value, shifting zeroes into the

most significant bits.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0101 dest 000 imm5 SRLI Rdest,#imm5

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-116

REJ09B0135-0001Z

3

load/store instruction ST
Store

ST

[Mnemonic]

(1) ST Rsrc1,@Rsrc2
(2) ST Rsrc1,@+Rsrc2
(3) ST Rsrc1,@-Rsrc2
(4) ST Rsrc1,@(disp16,Rsrc2)

[Function]

Store

(1) * (signed int *) Rsrc2 = Rsrc1;

(2) Rsrc2 += 4, * (signed int *) Rsrc2 = Rsrc1;

(3) Rsrc2 -= 4, * (signed int *) Rsrc2 = Rsrc1;

(4) * (signed int *) (Rsrc2 + (signed short) disp16) = Rsrc1;

[Description]

(1) ST stores Rsrc1 in the memory at the address specified by Rsrc2.

(2) ST increments Rsrc2 by 4 and stores Rsrc1 in the memory at the address specified by the resultant Rsrc2.

(3) ST decrements Rsrc2 by 4 and stores the contents of Rsrc1 in the memory at the address specified by the

resultant Rsrc2.

(4) ST stores Rsrc1 in the memory at the address specified by Rsrc combined with the 16-bit displacement. The

displacement value is sign-extended before the address calculation.

The condition bit (C) dose not changed.

[EIT occurrence]

Address exception (AE)

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-117

REJ09B0135-0001Z

3

[Encoding]

0010 src1 0100 src2 ST Rsrc1,@Rsrc2

0010 src1 0110 src2 ST Rsrc1,@+Rsrc2

0010 src1 0111 src2 ST Rsrc1,@-Rsrc2

1010 src1 0100 src2 disp16

ST Rsrc1,@(disp16,Rsrc2)

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-118

REJ09B0135-0001Z

3

load/store instruction STB
Store byte

STB

[Mnemonic]

(1) STB Rsrc1,@Rsrc2
(2) STB Rsrc1,@Rsrc2+
(3) STB Rsrc1,@(disp16,Rsrc2)

[Function]

Store

(1) *(signed char *)Rsrc2 = Rsrc1;

(2) *(signed char *)Rsrc2 = Rsrc1, Rsrc2 += 1;

(3) *(signed char *)(Rsrc2 + (signed short)disp16) = Rsrc1;

[Description]

(1) STB stores the byte data on the LSB side of Rsrc in a memory location whose address is specified by Rdest.

(2) STB stores the byte data on the LSB side of Rsrc in a memory location whose address is specified by Rdest, and

then increment Rdest by 1.

(3) STB stores the byte data on the LSB side of Rsrc1 in a memory location whose address is specified by Rdest

and a 16-bit displacement. The displacement is sign-extended before address calculation.

The condition bit (C) does not change.

[EIT occurrence]

None

[Encoding]

0010 src1 0000 src2 STB Rsrc1,@Rsrc2

0010 src1 0001 src2 STB Rsrc1,@Rsrc2+

1010 src1 0000 src2 disp16

STB Rsrc1,@(disp16,Rsrc2)

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-119

REJ09B0135-0001Z

3

load/store instruction STH
Store halfword

STH

[Mnemonic]

(1) STH Rsrc1,@Rsrc2
(2) STH Rsrc1,@Rsrc2+
(3) STH Rsrc1,@(disp16,Rsrc2)

[Function]

Store

(1) *(signed short *)Rsrc2 = Rsrc1;

(2) *(signed short *)Rsrc2 = Rsrc1, Rsrc2 += 2;

(3) *(signed short *)(Rsrc2 + (signed short)disp16) = Rsrc1;

[Description]

(1) STH stores the halfword data on the LSB side of Rsrc in a memory location whose address is specified by Rdest.

(2) STH stores the halfword data on the LSB side of Rsrc in a memory location whose address is specified by Rdest,

and then increment Rdest by 2.

(3) STH stores the halfword data on the LSB side of Rsrc in a memory location whose address is specified by Rdest

and a 16-bit displacement. The displacement is sign-extended before address calculation.

The condition bit (C) does not change.

[EIT occurrence]

Address exception (AE)

[Encoding]

0010 src1 0010 src2 STH Rsrc1,@Rsrc2

0010 src1 0011 src2 STH Rsrc1,@Rsrc2+

1010 src1 0010 src2 disp16

STH Rsrc1,@(disp16,Rsrc2)

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-120

REJ09B0135-0001Z

3

arithmetic operation instruction SUB
Subtract

SUB

[Mnemonic]

SUB Rdest,Rsrc

[Function]

Subtract

Rdest = Rdest - Rsrc;

[Description]

SUB subtracts Rsrc from Rdest and puts the result in Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0000 dest 0010 src SUB Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-121

REJ09B0135-0001Z

3

arithmetic operation instruction SUBV
Subtract with overflow checking

SUBV

[Mnemonic]

SUBV Rdest,Rsrc

[Function]

Subtract

Rdest = (signed) Rdest - (signed) Rsrc;

C = overflow ? 1 : 0;

[Description]

SUBV subtracts Rsrc from Rdest and puts the result in Rdest.

The condition bit (C) is set when the subtraction results in overflow; otherwise, it is cleared.

[EIT occurrence]

None

[Encoding]

0000 dest 0000 src SUBV Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-122

REJ09B0135-0001Z

3

arithmetic operation instruction SUBX
Subtract with borrow

SUBX

[Mnemonic]

SUBX Rdest,Rsrc

[Function]

Subtract

Rdest = (unsigned) Rdest - (unsigned) Rsrc - C;

C = borrow ? 1 : 0;

[Description]

SUBX subtracts Rsrc and C from Rdest and puts the result in Rdest.

The condition bit (C) is set when the subtraction result cannot be represented by a 32-bit unsigned integer;

otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

0000 dest 0001 src SUBX Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-123

REJ09B0135-0001Z

3

EIT-related instruction TRAP
Trap

TRAP

[Mnemonic]

TRAP #imm4

[Function]

Generate TRAP

BPC = NextPC; (NextPC denotes the PC of the next instruction)

BSM = SM;

BIE = IE;

BPM = PM

BCE = CE

BC = C;

IE = 0;

PM =0;

CE = 0

C = 0;

call_trap_handler(imm4);

[Description]

Generate a trap of the specified number.

The values of the SM, IE, PM, CE and C bits in the PSW register are saved to the respective backup bits BSM,

BIE, BPM, BCE and BC, and the IE, PM, CE and C bits each are updated to 0.

[EIT occurrence]

Trap (TRAP)

[Encoding]

0001 0000 1111 imm4 TRAP #imm4

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-124

REJ09B0135-0001Z

3

load/store instruction UNLOCK
Store unlocked

UNLOCK

[Mnemonic]

UNLOCK Rsrc1,@Rsrc2

[Function]

Store unlocked

if (LOCK == 1) { * (signed int *) Rsrc2 = Rsrc1; }

LOCK = 0;

[Description]

When the LOCK bit is 1, the contents of Rsrc1 are stored at the memory location specified by Rsrc2. When the

LOCK bit is 0, store operation is not executed. The condition bit (C) dose not changed. This instruction clears the

LOCK bit to 0 in addition to the simple storage operation.

The LOCK bit is internal to the CPU and cannot be accessed accepts by using the LOCK and UNLOCK

instructions.

[EIT occurrence]

Address exception (AE)

[Encoding]

0010 src1 0101 src2 UNLOCK Rsrc1,@Rsrc2

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-125

REJ09B0135-0001Z

3

logic operation instruction XOR
Exclusive OR

XOR

[Mnemonic]

XOR Rdest,Rsrc

[Function]

Exclusive OR

Rdest = Rdest ^ Rsrc;

[Description]

XOR computes the logical XOR of the corresponding bits of Rdest and Rsrc, and puts the result in Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

0000 dest 1101 src XOR Rdest,Rsrc

INSTRUCTIONS
3.2 Detailed Description of Instructions

Rev.0.01 Feb 05,2004 3-126

REJ09B0135-0001Z

3

logic operation instruction XOR3
Exclusive OR 3-operand

XOR3

[Mnemonic]

XOR3 Rdest,Rsrc,#imm16

[Function]

Exclusive OR

Rdest = Rsrc ^ (unsigned short) imm16;

[Description]

XOR3 computes the logical XOR of the corresponding bits of Rsrc and the 16-bit immediate value, which is

zero-extended to 32 bits, and puts the result in Rdest.

The condition bit (C) dose not changed.

[EIT occurrence]

None

[Encoding]

1000 dest 1101 src imm16

XOR3 Rdest,Rsrc,#imm16

INSTRUCTIONS
3.3 Notes about the BCL and BNCL Instructions

Rev.0.01 Feb 05,2004 3-127

REJ09B0135-0001Z

3
3.3 Notes about the BCL and BNCL Instructions

If the BCL or BNCL instruction is located at a word boundary and the 16-bit instruction in the latter half of the word
boundary is a sequentially executed instruction, it depends on the value of the C bit whether the latter half 16-bit
instruction is executed. Therefore, be especially careful when the BCL or BNCL instruction is located at a word
boundary and the instruction is followed by a 16-bit instruction in the latter half of the word boundary.

If instruction codes are located in the manner shown below and BCL (or BNCL) branches off upon C bit = 1, the
latter half 16-bit instruction is not executed. This is because the jump addresses in the OPSP-CPU should always be
aligned with word boundaries (except when the RTE instruction is executed). If C bit = 0 and BCL (or BNCL) does not
branch, the latter half 16-bit instruction is executed.

0 BCL or BNCL 0 xxxx instruction

It depends on the value of the C bit whether the xxxx instruction is executed.

On the other hand, if the latter half 16-bit instruction (yyyy instruction) is a parallel executed instruction, the yyyy

instruction is executed at the same time BCL (or BNCL) is executed.

0 BCL or BNCL 1 yyyy instruction
The yyyy instruction is executed in parallel with BCL (or BNCL).

INSTRUCTIONS
3.4 Exception and Trap Handling during Parallel Instruction Execution

Rev.0.01 Feb 05,2004 3-128

REJ09B0135-0001Z

3
3.4 Exception and Trap Handling during Parallel Instruction Execution

During parallel instruction execution, exceptions and traps are handled in the manner shown below.

Table 3.4.1 Exception and trap handling during parallel instruction execution

O pipe(left side)

instruction

S pipe (right side)

instruction

Operation

RIE Any instruction RIE occurs. Instruction on neither the left side nor the right side is

executed.

RIE RIE RIE occurs. Instruction on neither the left side nor the right side is

executed.

Any instruction RIE RIE occurs. Instruction on neither the left side nor the right side is

executed.

PIE Any instruction PIE occurs. Instruction on neither the left side nor the right side is

executed.

PIE RIE RIE occurs. Instruction on neither the left side nor the right side is

executed.

AE Any instruction AE occurs. Instruction on neither the left side nor the right side is

executed.

AE RIE RIE occurs. Instruction on neither the left side nor the right side is

executed.

TRAP Any instruction TRAP occurs. Instructions on both the left and right sides are executed.

TRAP RIE RIE occurs. Instruction on neither the left side nor the right side is

executed.

INSTRUCTIONS
3.4 Exception and Trap Handling during Parallel Instruction Execution

Rev.0.01 Feb 05,2004 3-130

REJ09B0135-0001Z

3

This page is blank for reasons of layout.

CHAPTER AAPPENDICES

APPENDICES
Appendix 1 Mechanism of Pipelined Instruction Processing

Rev.0.01 Feb 16,2004 A-2

REJ09B0135-0001Z

APPENDICES
Appendix 1 Mechanism of Pipelined Instruction Processing

Appendix 1.1 Outline of Pipelined Instruction Processing

The OPSP CPU core has two pipelines (O pipe and S pipe). These two pipelines each consist of five pipeline
stages. Parallel instruction execution by the OPSP CPU core is accomplished by using these two pipelines at the
same time. (For details about combinatorial instructions that can be executed in parallel at the same time, refer to
Section 2.5, “Parallel Instruction Execution.”)

 Operation of the O pipeline and outline of each stage

(1) IF stage (instruction fetch stage)

This is the stage in which the CPU fetches instructions. Instructions are fetched from memory (cache).
The OPSP CPU has an instruction queue, so that it continues fetching instructions until the instruction queue

is filled, regardless of whether decode processing in the D (decode) stage has finished.

(2) D stage (decode stage)

In the D stage, the CPU decodes instructions (DEC). At this time, the CPU reads out a register (RF) and if the
result of the immediately preceding instruction needs to be referenced, it performs bypass processing (BYP).
However, the bypass processing is performed only when the immediately preceding instruction is a
register-to-register transfer or arithmetic operation instruction or a DSP function instruction.

(3) E stage (execution stage)

In this stage, the CPU performs arithmetic operation or address calculation (OP).

(4) MEM stage (memory access stage)

In this stage, the CPU accesses the operand (OA). This stage is used only when executing load/store
instructions.

(5) WB stage (write-back stage)

In this stage, the CPU writes the operation result or fetched data to a register.

Appendix Figure 1.1 shows a structure of the O pipeline and the operation performed in it.

APPENDICES
Appendix 1 Mechanism of Pipelined Instruction Processing

Rev.0.01 Feb 16,2004 A-3

REJ09B0135-0001Z

APPENDICES

Pipeline
stages IF stage D stage E stage MEM

stage WB stage

DEC Executed
processing IF

RF/BYP
OP

OA
WB

1 cycle

IF : Instruction fetch processing
DEC : Instruction decode processing
RF : Register fetch processing
OP : Operation
BYP : Bypass processing
OA : Operand access
WB : Write-back processing

Appendix Figure 1.1 Structure of the O Pipeline and the Operation Performed in It

APPENDICES
Appendix 1 Mechanism of Pipelined Instruction Processing

Rev.0.01 Feb 16,2004 A-4

REJ09B0135-0001Z

APPENDICES
 Operation of the S pipeline and outline of each stage

(1) IF stage (instruction fetch stage)

This is the stage in which the CPU fetches instructions. Instructions are fetched from memory (cache).
The OPSP CPU has an instruction queue, so that it continues fetching instructions until the instruction queue

is filled, regardless of whether decode processing in the D (decode) stage has finished.

(2) D stage (decode stage)

In the D stage, the CPU decodes instructions (DEC). At this time, the CPU reads out a register (RF) and if the
result of the immediately preceding instruction needs to be referenced, it performs bypass processing (BYP).
However, the bypass processing is performed only when the immediately preceding instruction is a
register-to-register transfer or arithmetic operation instruction or a DSP function instruction.

(3) E1 stage (execution stage 1)

In this stage, the CPU performs arithmetic operation or transfers data to registers or accumulators (OP1).

(4) E2 stage (execution stage 2)

This stage is used for DSP function instructions that write data to accumulators (OP2). In this case, the CPU
requires two execution cycles because two execution stages (E1 and E2) are used. This stage is not used for
other instructions that do not write operation results to accumulators. These instructions are sent directly to the
next WB stage.

(5) WB stage (write-back stage)

Operation results are written to registers or accumulators.

Appendix Figure 1.2 shows a structure of the S pipeline and the operation performed in it.

Pipeline
stages IF stage D stage E1 stage E2 stage WB stage

DEC Executed
processing IF

RF/BYP
OP1

OP2
WB

1 cycle

IF : Instruction fetch processing
DEC : Instruction decode processing
RF : Register fetch processing
OP1 : Operation 1
OP2 : Operation 2
BYP : Bypass processing
WB : Write-back processing

E stage

Appendix Figure 1.2 Structure of the S Pipeline and the Operation Performed in It

APPENDICES
Appendix 1 Mechanism of Pipelined Instruction Processing

Rev.0.01 Feb 16,2004 A-5

REJ09B0135-0001Z

APPENDICES
Appendix 1.2 Flow of Instruction Processing in the O and S Pipes

The IF and D stages in the O and S pipes are shared between the two pipelines, so that all instructions are
processed in common at up to the D stage. Which pipeline each particular instruction should be forwarded to, is
determined in the D stage.

Instructions to be executed in parallel are forwarded to both the O and S pipes. Other instructions are forwarded to
either the O or the S pipe and processed separately at the E and subsequent stages.

A flow of instruction processing in the O and S pipes is shown below.

IF D E MEM WB

E1 E2 WB

O pipe

S pipe Flow of instruction processing

Appendix Figure 1.3 Flow of Instruction Processing in the O and S Pipes

APPENDICES
Appendix 1 Mechanism of Pipelined Instruction Processing

Rev.0.01 Feb 16,2004 A-6

REJ09B0135-0001Z

APPENDICES
Appendix 1.3 Instructions and Pipelined Processing

The pipelines incorporated in the OPSP CPU each consist of five stages. Since the MEM stage is used for only
load/store instructions, and the E2 stage is used for only DSP function instructions that write data to accumulators, all
other instructions are processed at five pipeline stages.

 For load/store instructions

Pipeline IF D E MEM WB

* If memory access is performed with zero wait states, the MEM stage is executed in one
cycle. Otherwise, the MEM stage is executed in two or more cycles.

Pipeline IF D E MEM ・・・・・・ MEM WB

 For DSP function instructions

 (Instructions that write data to the accumulator)

Pipeline IF D E1 E2 WB

 For other instructions

Pipeline IF D E WB

* For multi-cycle instructions such as multiply or divide instructions, the E stage is executed
in two or more cycles.

Pipeline IF D E ・・・・・・ E WB

5 stages

4 stages

5 stages

Appendix Figure 1.4 Instructions and Pipelined Processing

APPENDICES
Appendix 1 Mechanism of Pipelined Instruction Processing

Rev.0.01 Feb 16,2004 A-7

REJ09B0135-0001Z

APPENDICES
Appendix 1.4 Pipelined Processing of Parallel Instructions

The OPSP CPU uses two pipelines (O and S pipes) at the same time to accomplish parallel instruction processing.
A pair of 16-bit instructions to be executed in parallel are forwarded through pipeline stages at the same time from

the IF to the D stage. After being forwarded to the E stage, they are processed independently in the O and S pipes.
Example pipeline operations for parallel instruction execution are shown below.

<Case 1> Parallel execution of a left-side instruction (O–) and a right-side instruction (–S)

LD R1,@R2 IF D E MEM WB O pipe

MULHI R3,R4 IF D E1 E2 WB S pipe

<Case 2> Parallel execution of a left-side instruction (O–) and a both-side instruction (OS)

LD R1,@R2 IF D E MEM WB O pipe

ADD R3,R4 IF D E1 WB S pipe

<Case 3> Parallel execution of a both-side instruction (OS) and a right-side instruction (–S)

ADD R1,R2 IF D E WB O pipe

MULHI R3,R4 IF D E1 E2 WB S pipe

<Case 4> Parallel execution of a both-side instruction (OS) and another both-side instruction (OS)

ADD R1,R2 IF D E WB O pipe

ADD R3,R4 IF D E1 WB S pipe

Appendix Figure 1.5 Pipelined Processing of Parallel Instructions

APPENDICES
Appendix 1 Mechanism of Pipelined Instruction Processing

Rev.0.01 Feb 16,2004 A-8

REJ09B0135-0001Z

APPENDICES
Appendix 1.5 Basic Pipeline Operation

In ideal pipelined instruction processing, it can be expected that each stage is executed in one cycle. However,
pipeline operation may be disturbed by processing at a particular stage or by execution of a branch instruction.

The following shows basic pipeline operation for several typical cases.

<Case 1>: When executing an instruction that requires two or more cycles for execution at the E stage

DIV R1,R2 IF D E E ・・・ E WB

ADD R3,R4 IF D stall ・・・ stall E WB

ADD R5,R6 IF stall ・・・ stall D E WB

ADD R7,R8 stall ・・・ stall IF D E WB

<Case 2>: When operand access cannot be finished in one cycle

LD R1,@R2 IF D E MEM MEM ・・・ MEM WB

LD R3,@R4 IF D E stall ・・・ stall MEM WB

ADD R5,R6 IF D stall ・・・ stall E WB

ADD R7,R8 IF stall ・・・ stall D E WB

Memory access with other than zero wait states

stall : Pipeline stall

Appendix Figure 1.6 Cases where Pipeline Operation is Disturbed - 1

APPENDICES
Appendix 1 Mechanism of Pipelined Instruction Processing

Rev.0.01 Feb 16,2004 A-9

REJ09B0135-0001Z

APPENDICES

<Case 3>: When executing a branch instruction
(except for conditional branch instructions that did not cause control to branch off)

Branch instruction IF D E WB

 IF D IF D E WB

 IF stall IF D E WB

 stall stall IF D E WB

<Case 4>: Where the subsequent instruction uses the operand read from memory

LD R1,@R2 IF D E MEM WB

ADD R3,R1 IF D stall stall E WB

<Case 5>: Where after writing to the PSW register SM bit in MVTC instruction,the subsequent instruction reads out R15

MVTC R1,PSW IF D E WB

SUB R3,R15 IF D stall E WB

Branch instruction executed

stall : Pipeline stall

Appendix Figure 1.7 Cases where Pipeline Operation is Disturbed - 2

APPENDICES
Appendix 1 Mechanism of Pipelined Instruction Processing

Rev.0.01 Feb 16,2004 A-10

REJ09B0135-0001Z

APPENDICES

<Case 6>: Where after executing an instruction that writes data to an accumulator

(e.g., DSP function instruction of MULHI), the same accumulator is read out in MVFAC instruction

MULHI R1,R2,A0 IF D E1 E2 WB

MVFACHI R3,A0 IF D stall E1 WB

<Case 7>: Where case 1 and case 4 occur at the same time in parallel instruction processing

LD R1,@R2 IF D E MEM WB

MUL R3,R4 IF D E E E E WB

ADD R1,R2 IF D stall stall stall E WB

ADD R5,R3 IF D stall stall stall E1 WB

stall : Pipeline stall

Appendix Figure 1.8 Cases where Pipeline Operation is Disturbed - 3

APPENDICES
Appendix 1 Mechanism of Pipelined Instruction Processing

Rev.0.01 Feb 16,2004 A-11

REJ09B0135-0001Z

APPENDICES
Shown below are special cases where the pipeline operation is not disturbed.

 Where the WB stage of a load instruction and that of a non-load instruction overlap

(Pipeline processing is not disturbed because writes to registers or accumulators can be performed at the same time.)

LD R1,@R2 IF D E MEM WB

ADD R1,R2 IF D E WB

ADD R5,R3 IF D E1 WB

 Where the subsequent instruction uses the register that was written to by the preceding instruction

(For register-to-register operations, pipeline processing is protected from becoming disturbed by a bypass mechanism.)

ADD R1,R2 IF D E WB

SUB R3,R1 IF D E WB

 Where before a load instruction finishes, the subsequent instruction writes to the same register.
(Load instruction execution at the WB stage is canceled.)

LD R1,@R2 IF D E MEM ・・・ MEM WB

 IF D E WB

 IF D E WB

 IF D E WB

Executed at the same time even
though WB stages overlap

Canceled if coincidence with
one of these occurs

Bypass processing

Appendix Figure 1.9 Special Cases where Pipeline Operation is Not Disturbed

APPENDICES
Appendix 2 Instruction Processing Time

Rev.0.01 Feb 16,2004 A-12

REJ09B0135-0001Z

APPENDICES
Appendix 2 Instruction Processing Time

The instruction processing time of the OPSP CPU normally is represented by the number of instruction execution
cycles at the E stage. Depending on pipeline operation, however, this instruction processing time may be affected by
instruction execution at other stages.

The following shows instruction processing time at each pipeline stage of the OPSP CPU.

Number of Execution Cycles at Each Stage
Instruction

IF D ENote3 MEM WB

Load instructions (LD,LDB,LDUB,LDH,LDUH,LOCK) RNote2 1 1 RNote2 1

Store instructions (ST,STB,STH,UNLOCK) RNote2 1 1 WNote2 -

BSET and BCLR instructions RNote2 1 1 R+W
Note2

-

Multiplication instructions (MUL) RNote2 1 4 - 1

Division/remainder instructions

（DIVB,DIVUB,REMB,REMUB）

RNote2 1 13 - 1

Division/remainder instructions

（DIVH,DIVUH,REMH,REMUH）

RNote2 1 21 - 1

Division/remainder instructions

（DIV,DIVU,REM,REMU）

RNote2 1 37 - 1

DSP function instructions [1]

(When writing data to accumulators)

RNote2 1 2（1）
Note4

- 1

DSP function instructions [2]

(When not writing data to accumulators) Note1

RNote2 1 1 - 1

Instructions other than the above

 (including DSP function instructions and BTST,

SETPSW and CLRPSW instructions)

RNote2 1 1 - 1

Note 1: The DSP function instructions that do not write data to accumulators include MVFACHI, MVFACLO,
MVFACMI, SATB and SATH.

Note 2: The number of execution cycles indicated by R and W depends on the type of microcomputer used.
Note 3: For the instructions executed in the O pipe, this indicates the number of execution cycles at the E stage. For

the instructions executed in the S pipe, this indicates a total number of execution cycles at both E1 and E2
stages.

Note 4: Although DSP function instructions [1] require two cycles for execution at the E stage, the actual throughput is
one because of pipelined instruction processing.

RENESAS 32-BIT OPEN PLATFORM SYNTHESIZABLE PROCESSOR
Software Manual
OPSP

Publication Data :

Rev.1.00

Mar 01,2004

Published by :

Sales Strategic Planning Div.
Renesas Technology Corp.

© 2004. Renesas Technology Corp., All rights reserved. Printed in Japan.

 OPSP
Software Manual

	OPSP Software Manual
	REVISION HISTORY
	Table of contents
	CHAPTER1 CPU PROGRAMMING MODEL
	Processor Modes
	Privileged Instructions

	CPU Registers
	General-purpose Registers
	Control Registers
	Processor Status Word Register: PSW (CR0)
	Condition Bit Register: CBR (CR1)
	Stack Pointer for Interrupt: SPI (CR2) and Stack Pointer for User: SPU (CR3)
	EIT Vector Base Register: EVB (CR5)
	Backup PC: BPC (CR6)

	Accumulators
	Program Counter (PC)
	Data Formats
	Bi-endian Function
	Data Types
	Data Formats

	Addressing Modes

	CHAPTER2 INSTRUCTION SET
	Outline of the Instruction Set
	Instruction Set
	Load and Store Instructions (10 instructions)
	Transfer Instructions (6 instructions)
	Arithmetic/Logical Instructions (46 instructions)
	Branch Instructions (21 instructions)
	Bit Manipulating Instructions (5 instructions)
	EIT Related Instructions (2 instructions)
	DSP Function Instructions (22 instructions)
	Coprocessor Support Instructions (3 instructions)

	List of OPSP Extended Instruction Set
	New Extended Instructions of the OPSP-CPU
	Function-Extended Instructions of the OPSP-CPU

	Instruction Formats
	Parallel Instruction Execution
	Instruction Formats
	Parallel Instruction Execution in the OPSP
	16-Bit Instruction List by Category
	Positions of Parallel Executed Instructions
	Operand Interferences

	CHAPTER3 INSTRUCTIONS
	Guide to Detailed Instruction Description
	Detailed Description of Instructions
	ADD
	ADD3
	ADDI
	ADDV
	ADDV3
	ADDX
	AND
	AND3
	BC
	BCL
	BCLR
	BEQ
	BEQZ
	BGEZ
	BGTZ
	BL
	BLEZ
	BLTZ
	BNC
	BNCL
	BNE
	BNEZ
	BRA
	BSET
	BTST
	CLRPSW
	CMP
	CMPEQ
	CMPI
	CMPU
	CMPUI
	CMPZ
	DIV
	DIVB
	DIVH
	DIVU
	DIVUB
	DIVUH
	JC
	JL
	JMP
	JNC
	LD
	LD24
	LDB
	LDH
	LDI
	LDUB
	LDUH
	LOCK
	MACHI
	MACLH1
	MACLO
	MACWHI
	MACWLO
	MACWU1
	MSBLO
	MUL
	MULHI
	MULLO
	MULWHI
	MULWLO
	MULWU1
	MV
	MVFACHI
	MVFACLO
	MVFACMI
	MVFC
	MVFCP
	MVTACHI
	MVTACLO
	MVTC
	MVTCP
	NEG
	NOP
	NOT
	OR
	OR3
	OPECP
	PCMPBZ
	RAC
	RACH
	REM
	REMB
	REMH
	REMU
	REMUB
	REMUH
	RTE
	SADD
	SATB
	SATH
	SC
	SETPSW
	SETH
	SLL
	SLL3
	SLLI
	SNC
	SRA
	SRA3
	SRAI
	SRL
	SRL3
	SRLI
	ST
	STB
	STH
	SUB
	SUBV
	SUBX
	TRAP
	UNLOCK
	XOR
	XOR3

	Notes about the BCL and BNCL Instructions
	Exception and Trap Handling during Parallel Instruction Execution

	APPENDICES
	Mechanism of Pipelined Instruction Processing
	Outline of Pipelined Instruction Processing
	Flow of Instruction Processing in the O and S Pipes
	Instructions and Pipelined Processing
	Pipelined Processing of Parallel Instructions
	Basic Pipeline Operation

	Instruction Processing Time

