
Porting Linux to the M32R processor

Hirokazu Takata
Renesas Technology Corp., System Core Technology Div.

4-1, Mizuhara, Itami, Hyogo, 664-0005, Japan
takata.hirokazu@renesas.com

Naoto Sugai, Hitoshi Yamamoto
Mitsubishi Electric Corp., Information Technology R&D Center

5-1-1, Ofuna Kamakura, Kanagawa 247-8501, Japan
{sugai,hitoshiy}@isl.melco.co.jp

Abstract

We have ported a Linux system to the Renesas1

M32R processor, which is a 32-bit RISC micropro-
cessor designed for embedded systems, and with an
on-chip-multiprocessor feature.

So far, both of UP (Uni-Processor) and SMP (Sym-
metrical Multi-Processor) kernels (based on 2.4.19)
have been ported and they are operating on the
M32R processor. A Debian GNU/Linux based sys-
tem has been also developed on a diskless NFS-root
environment, and more than 300 unofficial .deb
packages have already been prepared for the M32R
target.

In this paper, we describe this new architecture
port in detail and explain the current status of the
Linux/M32R project.

1 Introduction

A Linux platform for Renesas M32R processor has
been newly developed. The Renesas M32R proces-
sor is a 32-bit RISC microprocessor, which is de-
signed for embedded systems. It is suitable for a
System-on-a-Chip (SoC) LSI due to its compact-

1Renesas Technology Corp. is a new joint semiconductor
company established by Hitachi Ltd. and Mitsubishi Electric
Corp. on April 1, 2003. It would be the industry’s largest
microcontroller (MCU) supplier in the world. The M32R
family microcontroller and its successor will be continuously
supplied by Renesas.

ness, high performance, and low power dissipa-
tion. So far, the M32R family microcomputers have
widely used for the products in a variety of fields—
for example, automobiles, digital still cameras, dig-
ital video camcorders, cellular phones, and so on.

Recently, the Linux system has begun to be used
widely and employed even in the embedded systems.
The embedded systems would be more software-
oriented systems hereafter. The more complex and
larger the embedded system is, the more compli-
cated the software becomes and harder to develop.
In order to build these kinds of embedded sys-
tems efficiently, it will be more important to utilize
generic OSes such as Linux to develop software.

This is the first Linux architecture port to the
M32R processor. This porting project, called a
“Linux/M32R” project, has been active since 2000.
Its goal is to prepare a Linux platform for the M32R
processor. At first, this Linux porting was just a
feasibility study for the new M32R processor de-
velopment, and it was started by only a few mem-
bers of the M32R development team. Then, this
project has grown to a lateral project among Rene-
sas Technology Corp., Renesas Solutions Corp., and
Mitsubishi Electric Corp.

In this feasibility study, we have ported not only
Linux kernel, but also whole GNU/Linux system
including GNU tools, libraries, and other software
packages, so called “userland.” We also enhanced
the M32R processor to add MMU (Memory Man-
agement Unit) facility in order to port Linux sys-
tem. And we have also developed an SMP ker-
nel to investigate multiprocessing by M32R’s on-

chip-multiprocessor feature[1]. At present, the
Linux/M32R system can operate on the dual M32R
cores in SMP mode.

In this paper, we describe this new architecture port
in detail and explain about the current status of the
Linux/M32R project.

2 Linux/M32R Platform for Embed-
ded Systems

Recently, due to the continuous evolution of semi-
conductor technologies, it is possible to integrate a
whole system into one LSI chip, so called “System-
on-a-Chip (SoC).”

In an SoC, microprocessor core(s), peripheral I/O
functions, internal memories, and user logics can be
integrated into a single chip.

By making use of wide internal buses, an LSI can
achieve high performance which can not be realized
by combination of several general-purpose LSIs. In
other words, we can optimize system performance
and cost by using SoC, because we can employ op-
timum hardware architecture and circuit configura-
tion.

In such an SoC, a microprocessor core is a key
part; therefore, the more compact and higher perfor-
mance microprocessor is significantly required. To
make such a high performance embedded processor
core, not only in circuit and process technology but
also architectural breakthrough is necessary. Espe-
cially, multiprocessor technology is important even
for the embedded processor, because it can improve
processor performance and lower system power dis-
sipation by increasing processor number scalably
and without increasing operating clock frequency.

For an SoC with embedded microprocessor, software
is also a key point. The more system is highly func-
tional, the more software will be complex and there
is an increasing demand for shortening development
time of SoC. Under such circumstance, recently the
Linux OS becomes to be adopted for embedded sys-
tems. Linux platform makes it easy to port applica-
tion programs developed on a PC/EWS to the tar-
get system. We believe that a full-featured Linux
system will come into wide use in embedded sys-
tems, because embedded systems will become more

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14 (link register)

R15 (stack pointer)

0 31

General Purpose Registers

PC

0 31

Control Registers

CR0 (PSW)

CR1 (CBR)

CR2 (SPI)

CR3 (SPU)

CR5 (EVB)

CR6 (BPC)

0 31

Program Counter

0 8 63

Accumulators

processor status word

condition bit register

interrupt stack pointer

user stack pointer

EIT vector base register

backup PC

A0

A1

Figure 1: M32R register architecture

functional and higher performance system will be
required.

In the development of embedded systems, it is
important to tune system performance from both
hardware and software points of view. There-
fore, we used M32R softmacro and FPGA (Field
Programmable Gate Array) devices to implement
an evaluation board for rapid system prototyping.
FPGA devices are slow, but make it possible to de-
velop a system in short turn-around time.

In this feasibility study, to construct a Linux plat-
form, we ported Linux to the M32R architecture,
and validated the hardware system architecture
through the porting, and developed the software de-
velopment environment.

2.1 M32R architecture

The M32R is a 32-bit RISC microprocessor, and em-
ploys load-store architecture like other RISC proces-
sors. Therefore, memory access is executed by only
load and store instructions and logical and arith-
metic operation is executed among registers. Except
for multiply and divide instructions, most of instruc-
tions can be executed in one clock, and instruction
completion does not depend on the the instruction
issuing order (out-of-order completion). The M32R
supports DSP operation instructions such as multi-
ply and accumulate instructions.

Figure 1 shows the M32R register architecture. The
M32R has sixteen 32-bit general purpose registers

(R0 ∼ R15) and 56-bit accumulators for the multi-
ply and accumulate operations. R14 is also used as
a link register (LR) which keeps return address for
a subroutine call. There are two stack pointer reg-
isters, SPI (interrupt stack pointer) and SPU (user
stack pointer). The CPU core selects one of them as
a current stack pointer (R15; SP) by the SM (stack
mode) bit of the PSW (processor status word).

2.2 M32R softmacro

The M32R softmacro is a compact microprocessor,
developed to integrate into a SoC. It is a full syn-
thesizable Verilog-HDL model and it has an excel-
lent feature that the core does not depend on a spe-
cific process technology. Due to a synchronous edge-
triggered design, it has good affinity to EDA tools.

This M32R softmacro is so compact that it can be
mapped into one FPGA. Utilizing such an M32R
softmacro, we developed software on a prototype
hardware and co-designed hardware and software si-
multaneously.

To port Linux to the M32R, some enhancement
of the M32R softmacro core was needed; processor
mode (user mode and supervisor mode) was intro-
duced and an MMU module was newly supported.

• TLB (Translation Lookaside Buffer): instruc-
tion/data TLBs are full-associative, 32-entries
each, respectively.

• page size : 4kB/16kB/64kB (user page), 4MB
(large page)

2.3 Integrated debugging function and
SDI

The integrated debugging function is a significant
characteristic of the M32R family microcomputer.
The M32R common debugging interface, called as
SDI (Scalable Debug Interface), is utilized via five
JTAG pins; the internal debug functions are con-
trolled through these debug pins.

Using the JTAG interface defined as IEEE 1149.1,
internal debug function can be used. No on-chip
or on-board memory to store monitor programs is
necessary, because such monitor programs can be
provided and executed via JTAG pins.

3 Porting Linux to the M32R

The Linux system consists of not only the Linux
kernel, but also the GNU toolchain and libraries.
Of course, a target hardware environment is also
necessary to execute Linux.

Therefore we had to accomplish the following tasks:

• Porting the Linux kernel

• Development of Linux/M32R platforms (M32R
FPGA board, etc.)

• Enhancement of the GNU toolchain

• Porting libraries (GNU C library, etc.)

• Userland; preparing software packages

Actually, in the Linux/M32R development, these
tasks have developed concurrently.

3.1 Porting Kernel to the M32R

In the Linux kernel, the architecture-dependent por-
tion is clearly distinguished. Therefore, in case of a
new architecture port, all you need to do is pre-
pare only architecture dependent code, which is far
less than whole Linux code. In the M32R case,
include/asm-m32r/ and arch/m32r/ are needed.

To be more precise, we can prepare the architecture-
dependent portion in reference to the other architec-
ture implementation. However, it has some difficul-
ties in rewriting these portions:

asm function : It was very difficult to port some
headers in which asm statement is extensively
used, because an insufficient and inadequate
rewriting easily cause bugs which are very hard
to debug.

function inlining : In the Linux source code,
function inlining is heavily used. We can not
disable the compiler’s inline optimization func-
tion to compile the kernel source, but a buggy
toolchain sometimes causes a severe problem in
optimization.

System Call : TRAP#2
R7 : System Call Number
R0 .. R6 : arg0 .. arg6 (max. 7 arguments)

User Process

User Stack (SPU)

Kernel

Kernel Stack (SPI)

System Call
Execution

System Call
Invocation TRAP#2

Change Stack Pointer

Figure 2: System call interface

In this porting, we started with a minimum configu-
ration kernel. We prepared stub routines, built and
checked the kernel operation, and gradually added
files of kernel/, mm/, fs/, and other directories.
When we started kernel porting, there was no eval-
uation board. So, we made use of GNU M32R sim-
ulator to port a kernel at first.

The GNU simulator was very useful at the initial
stage of kernel porting, though it does not support
MMU. It had also good characteristics that down-
loading was quite fast comparing with evaluation
board and C source level debug was possible.

Employing the simulator and initrd image of romfs
root filesystem, it is possible to develop and debug
kernel’s basic operation, such as scheduling, initial-
ization and memory management. Indeed, the de-
mand loading is performed after /sbin/init is exe-
cuted by a execve() system call at the end of kernel
boot sequence of init().

At first, we started to port the kernel 2.2.16. The
current stable version of the M32R kernel is 2.4.19
and now we are developing 2.5 series kernel for the
M32R.

3.1.1 System Call Interface

In the M32R kernel, like other processors, a system
call is handled by a system call trap interface. In

R4
R5
R6

*pt_regs
R0
R1
R2
R3
R7
R8
R9

R10
R11
R12

syscall_nr
ACC0H
ACC0L
ACC1H
ACC1L
PSW
BPC
SPU
R13
LR
SPI

ORIG_R0

+0x00
+0x04
+0x08
+0x0c
+0x10
+0x14
+0x18
+0x1c
+0x20
+0x24
+0x28
+0x2c
+0x30
+0x34
+0x38
+0x3c
+0x40
+0x44
+0x48
+0x4c
+0x50
+0x54
+0x58
+0x5c
+0x60
+0x64

Lower Address

Upper Address

Stack Top; SPI
(= pt_regs)

Figure 3: Stack frame formed by a system call

the system call interface (syscall I/F), all general
purpose registers and accumulators are pushed onto
the kernel stack to save the context.

In Fig. 2, the syscall ABI (Application Binary In-
terface) for the M32R is shown. Two stack point-
ers, kernel stack (SPI) and user stack (SPU), are
switched over by software at the entry point of
syscall I/F routine, because stack pointers do not
change automatically by TRAP instruction. In order
to switch stack pointers without working register
and avoid multiple TLB miss exception, CLRPSW in-
struction is newly introduced.

The stack frame formed by the syscall I/F routine
is shown in Fig. 3. It should be noted that there
is a special system call in Linux, like sys clone(),
that has particular interface passing a stack top ad-
dress as a first argument. Therefore, we employ a
parameter passing method: The stack top address
(∗pt regs) is always put onto the stack as a implicit
stack parameter like the SuperH implementation.

According to the ABI of the M32R gcc compiler,

TLB miss handler

access exception handler

do_page_fault()

handle_mmu_fault()

(1) TLB miss exception
(2) access exception

reexecute after
the execution of
exception handlers

MMU exception!

Figure 4: Exception handling for the demand-
loading operation

the first 4 arguments are passed by registers and the
following arguments are passed by stack. Therefore,
the ∗pt regs parameter can be accessed as the eighth
parameter on the kernel stack.

The syscall nr and ORIG R0 field are used for the
signal operations. When a system call is issued,
its system call number is stored into R7 and trap
instruction is executed. syscall nr also holds the
system call number in order to determine if a signal
handler is called from a system call routine or not.
Because the R0 field might be changed to the return
value of a system call, ORIG R0 keeps the original
value of R0 in preparation to restart the system call.

3.1.2 Memory Management

Linux manages the system memory by paging. In
the M32R kernel, the page size is 4kB like the other
architecture.

In demand loading and copy-on-write operations, a
physical memory page can be newly mapped when a
page fault happens. Such a page fault is handled by
both TLB miss handler and access exception han-
dler (Fig. 4).

demand loading : If an instruction fetch or
operand access to the address which is not reg-
istered in page table, an MMU exception hap-
pens. In case of a TLB miss exception, TLB
miss handler is called. To lighten the TLB
miss handling operation, TLB handler only sets
TLB entries. Page mapping and page-table set-
ting operations are to be handled by the access
exception handler; For accessing a page which
does not exist in the page table, the TLB miss

handler sets the TLB entry’s attribute to not-
accessible at first. After that, since the memory
access causes an access exception due to not-
accessible, access exception handler deal with
the page table operations.

copy-on-write : In Linux, copying a process by
fork() and reading a page in read-only mode
are handled as a copy-on-write operation to re-
duce vain copy operations. For such a copy-on-
write operation, TLB miss handler and access
exception handler are used like a demand load-
ing operation.

The M32R’s data cache (D-cache) is indexed and
tagged physically. So, it does not have to take care
the cache aliasing. Therefore the D-cache is flushed
only for a signal handler generation and a trampo-
line code generation.

To simplify and speed up the cache flushing opera-
tions for trampoline code, a special cache flush trap
handler (trap#12) is established in the M32R ker-
nel.

3.1.3 SMP support

In Linux 2.4, multiprocessing performance is signifi-
cantly improved compared with Linux 2.2 or before,
because the kernel locking for accessing resources is
finer.

To implement such a kernel locking on SMP ker-
nel, spinlock is generally used for mutual exclusion
control. But the M32R has no atomic test-and-set
instruction, the spinlock operations can be imple-
mented with LOCK and UNLOCK instructions in the
M32R kernel.

The LOCK and UNLOCK instructions are a load and
store instructions for mutual exclusion operation,
respectively. LOCK acquires and keeps a privilege to
access the CPU bus until UNLOCK instruction is ex-
ecuted. Accessing a lock variable by LOCK/UNLOCK
instruction pair under a disabled interruption con-
dition, we implemented an atomic access.

Figure 5 shows an M32R on-chip-multiprocessor
prototype chip. Linux SMP kernel can be executed
on the on-chip multiprocessor system. On-chip mul-
tiprocessor might be a mainstream in near future
even in embedded systems, because multiprocessor

(a) Chip (b) CPU

Figure 5: A micrograph of an on-chip-multiprocessor M32R prototype chip

system can enhance the CPU performance without
increasing operating clock frequency and power dis-
sipation. In this chip, two M32R cores are inte-
grated and each has its own cache for good scalabil-
ity.

3.2 Development of Linux/M32R Plat-
form

To execute full-featured Linux OS, an MMU is nec-
essary; therefore, we developed a new M32R soft-
macro core with an MMU and made an evalua-
tion board “Mappi,” which used FPGAs to map the
M32R softmacro core, as a Linux/M32R platform.

As shown in Fig. 6, the Mappi evaluation board
consists of two stacked boards. The upper board is
a CPU board and the lower board is an extension
board. The CPU board has no real CPU chip, but
it has two large FPGAs on it. We employ the M32R
softmacro core and map it onto the FPGAs.

The Mappi board is a very flexible system for pro-
totyping. If we have to modify a CPU or other inte-
grated peripherals, we can immediately change and
fix them by modifying their Verilog-HDL model.

At first, we could only use initrd and busybox on
it, because the Mappi system had only a CPU board
and it had only 4MB SRAMs. After the exten-
sion board was developed, more memory (SDRAM),
Ethernet, and PC-card I/F became available. So,
we introduced NFS and improved the porting envi-

ronment. It was Dec. 2001 that we succeeded in
booting via a network using the extension board.

Utilizing the M32R’s SDI function and JTAG-ICE,
mentioned before, we can download and debug a
target program via JTAG port. It is much faster
than a serial connection because the Debug DMA
function is used for downloading and refering inter-
nal resources. Of cource, it is also possible to set
hardware breakpoints for the PC break and the ac-
cess break via SDI.

Generally speaking, it is too difficult to develop and
debug software programs on an unsteady hardware
which is under development. But, we could debug
and continued to develop the system by using the
SDI debugger, because the SDI debugger made it
possible to access the hardware resources directly
and it was very useful for the kernel debugging.

Finally, we constructed an SMP environment to exe-
cute the SMP kernel, mapping the M32R softmacro
cores to two FPGAs on the Mappi CPU board;
concretely, we replaced the user logic portion in
FPGA#1 shown in Fig. 6 with an another M32R
core with a bus arbitor, and modified the ICU (In-
terrupt Control Unit) to support inter-processor in-
terruption for the multiprocessor.

After the M32R prototype on-chip-multiprocessor
chip was developed, the Linux/M32R system includ-
ing userland applications has been mainly developed
by using the real chip, because the operating clock
frequency of the M32R FPGA is 25MHz but the

CPU

Mem BIU

FPGA#0

I/O

FPGA#1

User
Logic

CPU Board

Display
Cont. LAN

Extension Board

PC-card

FlashROM
 4MB

SDRAM
 64MB

Figure 6: Mappi: the M32R FPGA evaluation board; it has the M32R softmacro on FPGA (CPU,
MMU, Cache, SDI, SDRAMC, UART, Timer), FPGA Xilinx XCV2000E ×2, SDRAM(64MB), FlashROM,
10BaseT Ethernet, Serial 2ch, PC-card slot ×2, and Display I/F(VGA)

M32R chip can run more than 10 times faster.

3.3 M32R GNU toolchain enhancement

The GNU toolchain is necessary to develop the
Linux kernel and a variety of Linux application
programs. When we started the Linux porting,
we had only Cygnus’s (now it’s Red Hat, Inc.)
GNUProTMm32r-elf toolchain. It was sufficient for
the kernel development; however, it could not be ap-
plicable to user application development on Linux,
because in a modern UNIX system a dynamic link-
ing method is strongly required to build a compact
system and achieve higher runtime performance.
(Although a static linked program is much faster
than a dynamic linked program if the program size
is small. The bigger a program becomes, the larger
cache miss penalty would be.)

We enhanced the M32R GNU toolchain to support
shared libraries:

• Change BFD library to support dynamic link-
ing; some relocations were added for dynamic
linking.

• Change GCC and Binutils to support PIC (Po-
sition Independent Code).

Because the version of the GNUpro m32r-elf gcc was
2.8 and too old, we had to upgrade and develop

a new m32r-linux toolchain. We applied GNUpro
patch to the gcc of the FSF version and developed
GCC (v2.95.4, v3.0, v3.2.2) and Binutils (v2.11.92,
v2.13.90).

In a prologue portion of a C function, the following
code is generated when the -fPIC option is specified.

; PROLOGUE

push r12

push lr

bl .+4 ; get the next instruction’s

; PC address to lr

ld24 r12,#_GLOBAL_OFFSET_TABLE_

add r12,lr

We also modified BFD libraries to support dynamic
linking. We referenced the i386 implementation and
supported the ELF dynamic linking. In the ELF ob-
ject format [3], GOT (Global Offset Table) and PLT
(Procedure Linkage Table) are used for the dynamic
linking. In the M32R implementation, the GOT is
refered by R12 relative addressing and the RELA
type relocation is emoployed. Like a IA-32 im-
plementation, the code fragment of PLT refers the
GOT to determine the symbol address, because it
is suitable and efficient for the M32R’s cache which
can be simply flushed whole caching data.

As for GDB, we enhanced it to support a new
remote target m32rsdi to use the SDI remote
connection. By using the gdb, we can do a
remote debugging of the kernel in C source-
level. In the latest version of m32r-linux-gdb/

m32r-linux-insight (v5.3), we have employed a
SDI server that engages in accessing the JTAG
port of the ICE/emmulator connected with the par-
allel port of the host PC. This gdb makes it possible
to debug using SDI, communicating with the SDI
server in background. Though the SDI server re-
quires privileged access to use parallel port, we can
use gdb in user mode.

3.4 Porting GNU C library

The GNU C library is the most fundamental library,
which is necessary to execute a variety kind of appli-
cation programs. So we decided to port it to imple-
ment full-featured Linux system for a study, though
its footprint is too large for a tiny embedded system.

We started to port glibc-2.2.3 (v2.2.3) in eary stage
of the Linux/M32R porting, it was about the same
time that the kernel’s scheduler began to work.

Then, the glibc for the M32R have been developed
step by step;

• Check by a statically linked program, for exam-
ple, hello.c (newlib version → glibc version).

• Build a shared library version of glibc and check
by dynamically linked programs, hello.c,
busybox, etc.

• Port the LinuxThreads library to support
Pthreads (POSIX thread).

The latest version of the glibc for the M32R is
glibc-2.2.5 (v2.2.5). It also supports a Linux-
Threads library, that implements POSIX 1003.1c
kernel threads for Linux. In this LinuxThreads li-
brary, we implemented fast user-level mutual exclu-
sion using the Lamport’s algorithm [2], because the
system call implementation was quite slow due to
context switching.

After the glibc porting was finished, we started to
build various kind of software. But it has taken sev-
eral months to implement and debug the following:

• Fixup operations of the user copy routines in
the kernel

• Resolve the relocation by a dynamic linker
ld-linux.so

• Signal handling

Especially, the dynamic linking operation was the
one of the most difficult portions in this GNU/Linux
system porting, because the dynamic linker/loader
resolved global symbols and subroutine function ad-
dresses in runtime. Furthermore, the dynamic linker
itself is also a shared library, so we can not debug it
in C source-level. However, we debugged the linker,
making use of a simulator, a SDI debugger, and all
kinds of things.

3.5 Userland

For the sake of preparing software packages and
making the Linux/M32R distributable, we built ma-
jor software packages.

We chose the Debian GNU/Linux as a base distri-
bution, because it is well-managed and all of the
package sources are open and published. In Debian,
using command programs such as dpkg and apt, it
is possible to manage abundant software packages
easily.

To build a binary package for the M32R, we did as
the following:

1. Expand the source tree from the Debian source
package (*.dsc and *.orig.tar.gz)

2. Rebuild a binary package by using a dpkg-
buildpackage command, specifying the target
architecture to m32r (dpkg-buildpackage -a
m32r -t m32r-linux).

So far, more than 300 unofficial .deb packages have
been prepared for the M32R target, including the
basic commands, such as self-tools and shells, util-
ities, package management tools (dpkg, apt), and
application programs as follows:

adduser, anacron, apt, base-files, bash, bc, binu-

tils, bison, boa, bsdgames, bsdutils, busybox, core-

utils, cpp-3.2, cvs, debianutils, devfsd, diff, dpkg,

e2fsprogs, elvis-tiny, expect, file, fileutils, findutils,

flex, ftp, g++-3.2, gcc-3,2, grep, gzip, hostname,

klogd, less, libc6, locales, login, lynx, m4, make,

mawk, modutils, mount, nbd-client, net-tools, net-

base, netkit-inetd, netkit-ping, passwd, perl-base,

Figure 7: A snapshot of the desktop image of X; the
window manager is AfterStep

perl-modules, portmap, procps, rsh-client, rsh-

server, samba, sash, sed, strace, sysklogd, tar,

tcl8.3, tcpd, tcsh, telnet, textutils, util-linux, wu-

ftpd, . . .

Most of these packages were developed under the
cross environment, except some software packages,
such as Perl, Xserver, gcc, etc. Because they had
to be configured in the target environment. There-
fore, self tools were necessary in order to build pack-
ages under the self environment. Fortunately, by us-
ing .deb packages and dpkg-cross commands, the
same package files can be completely shared between
the self and the cross environment.

Regarding the GUI environment, we have ported
some window systems (X, Microwindows, Qt-
Embedded). We ported them easily using a frame-
buffer device. Figure 7 is a sample screen snapshot
of X desktop image. gears and bounce are demon-
stration programs of the Mesa-3.2 3D-graphics li-
brary.

4 Evaluation

The Linux/M32R system’s conformance have been
checked and validated by using the LSB (Linux
Standard Base) testsuites, which are open testsuites
and based on the LSB Specification 1.2 [5]. In this
validation, we compared the following two environ-
ments.

Linux/M32R
based on the Debian GNU/Linux (sid)
linux-2.4.19 (m32r 2 4 19 20030109)
glibc-2.2.5 (libc6 2.2.5-6.4 m32r.deb)
gcc-3.0 (self gcc; m32r-20021112)

RedHat7.3 2

linux-2.4.18-10 (kernel-2.4.18-10.i686.rpm)
glibc-2.2.5 (glibc-2.2.5-42.i686.rpm)
gcc-2.96

The result of validation is shown in Table 1. Judg-
ing from the result, the LSB conformance of the
Linux/M32R is no less good than the RedHat Linux
7.3, because the original Debian distribution has ba-
sically good LSB conformance and quality.

5 Future work

To apply the Linux/M32R to embedded systems, it
is indispensable to tune and shrink the whole sys-
tem more and more. As for the kernel, particulary,
tuning and improving realtime performance will be
strongly required.

At present, we are porting the Linux 2.5 series ker-
nel for the M32R in order to support the state of the
art kernel features, such as O(1) scheduler, the pre-
emptible kernel, the no-MMU support, the NUMA
support, and so on.

We are also planning to utilize DMA function and
internal SRAM to increase Linux system perfor-
mance. And for the high-end embedded systems,
we intend to continuously focus on the SMP kernel
for the on-chip-multiprocessor.

6 Summary

To build a Linux platform, we have ported a
GNU/Linux system to the M32R processor. In this
work, a hardware/software co-design methodology
was employed, using a full synthesizable M32R soft-
macro core to accelerate Linux/M32R development.
To develop SoC in a short time, such a hardware

2The kernel and glibc are upgraded and different from the
original Red Hat 7.3 distribution.

Table 1: LSB 1.2 testsuites result

ANSI.os POSIX.os LSB.os RedHat7.3
Section ANSI.hdr F M POSIX.hdr F M F M Total Total

Expect 386 1244 1244 394 1600 1600 908 908 8284 8284
Total Actual 386 1244 1244 394 1600 1600 908 908 8284 8284
Succeeded 176 1112 86 207 1333 0 695 0 3609 3583
Failed 4 0 0 5 2 0 49 0 60 45
Warnings 0 12 0 0 5 0 2 0 19 18
FIP 2 0 0 2 2 0 1 0 7 7
Unresolved 0 0 0 0 0 0 5 0 5 4
Uninitiated 0 0 0 0 0 0 0 0 0 0
Unsupported 203 0 0 179 72 0 59 0 513 513
Untested 0 4 0 0 7 0 39 0 50 43
NotInUse 1 116 1158 1 179 1600 58 908 4021 4021

Key: F:function, M:macro; FIP: Further Information Provided

and software co-design and co-debugging methodol-
ogy will become more important hereafter.

Linux will play a great role in the field of not only
PC servers but also embedded systems in the near
future. Through the feasibility study, we believe
that the Open Source will provide a quite large im-
pact on developing embedded system design and de-
velopment. If we have opportunity, we hope to pub-
lish the Linux/M32R and M32R GNU toolchain.

7 Acknowledgements

The authors greatly acknowledge the collaboration
and valuable discussion with the M32R develop-
ment team [1] and thank Takeo Takahashi, Kazuhiro
Inaoka, and Takeshi Aoki for their special contribu-
tions, and we would also like to thank Dr. Toru
Shimizu and Hiroyuki Kondo for their promotion of
the M32R processor development project.

References

[1] Satoshi Kaneko, Katsunori Sawai, Norio
Masui, Koichi Ishimi, Teruyuki Itou,
Masayuki Satou, Hiroyuki Kondo, Naoto
Okumura, Yukari Takata, Hirokazu Takata,
Mamoru Sakugawa, Takashi Higuchi, Sugako
Ohtani, Kei Sakamoto, Naoshi Ishikawa,
Masami Nakajima, Shunichi Iwata,

Kiyoshi Hayase, Satoshi Nakano, Sachiko
Nakazawa, Osamu Tomisawa, Toru Shimizu,
A 600MHz Single-Chip Multiprocessor with

4.8GB/s Internal Shared Pipelined Bus

and 512kB Internal Memory, Proceedings
of 2003 International Solid-State
Circuits Conference, 14.5.

[2] Laslie Lamport, A Fast Mutual

Exclusion Algorithm, ACM Trans. on
Computer System, Vol. 5, No. 1, Feb.
1987, pp. 1-11.

[3] Executable and Linkable Format (ELF),
http://www.cs.northwestern.edu/∼pdinda/
ics-f01/doc/elf.pdf

[4] Debian GNU/Linux,
http://www.debin.org/

[5] LSB testsuites,
http://www.linuxbase.org/test/,
ftp://ftp.freestandards.org/pub/lsb/
test suites/released-1.2.0/runtime/

