
M32R ELF Application Binary Interface
Supplement 1.2

Kazuhiro Inaoka
Renesas Solutions Corp.

Kei Sakamoto
Renesas Technology Corp.

M32R ELF Application Binary Interface Supplement 1.2
by Kazuhiro Inaoka and Kei Sakamoto

1.2 Edition
Published Aug 26, 2004
Copyright © 2004 Renesas Technology Corporation

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1;

with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is available from

http://www.linuxbase.org/spec/refspecs/LSB_1.2.0/gLSB/gfdl.html (http://www.linuxbase.org/spec/refspecs/LSB_1.2.0/gLSB/gfdl.html).

Revision History

Revision 1.2 Aug 26, 2004 Revised by: Kazuhiro Inaoka, Renesas Solutions Corp.
Revise R_M32R_SDA16 and R_M32R_SDA16_RELA calculation.
Revision 1.1 Aug 19, 2004 Revised by: Kazuhiro Inaoka, Renesas Solutions Corp.
Revise relocation types information.
Revision 1.0 Jul 13, 2004 Revised by: Kei Sakamoto, Renesas Technology Corp.
Docbook formatted.

Table of Contents
1. Introduction ..1

1.1. The M32R Architecture and the System V ABI...1
1.2. How to Use the M32R ELF ABI Supplement...1
1.3. Evolution of the ABI Specification...1

2. Software Installation..3

2.1. Physical Distribution Media and Formats...3

3. Low Level System Information...4

3.1. Machine Interface..4
3.1.1. Processor Architecture..4
3.1.2. Data Representation..4
3.1.3. Byte Ordering...4
3.1.4. Fundamental Types...5
3.1.5. Aggregates and Unions...6
3.1.6. Bit-Fields..9

3.2. Function Calling Sequence..14
3.2.1. Registers and the Stack Frame..14

3.3. Operating System Interface...17
3.3.1. Virtual Address Space...18
3.3.2. Processor Execution Modes..18
3.3.3. Execution Interface...18
3.3.4. Process Initialization...18

3.4. Coding Examples..18
3.4.1. Code Model Overview..18
3.4.2. Function Calls...18
3.4.3. Switch Tables..19
3.4.4. Position-Independent Function Prologue...19
3.4.5. Variable Argument List...19
3.4.6. Allocating Stack Space Dynamically...19

4. Object Files...20

4.1. ELF Header...20
4.2. Special Sections...20
4.3. Symbol Table...20

4.3.1. Symbol Values..20
4.4. Relocation..21

4.4.1. Relocation Types...21

5. Program Loading and Dynamic Linking...25

5.1. Program Loading...25
5.2. Dynamic Linking...25

5.2.1. Dynamic Section...25
5.2.2. Global Offset Table...26
5.2.3. Function Addresses...26
5.2.4. Procedure Linkage Table..27
5.2.5. Program Interpreter...29

iii

6. Libraries..30

A. GNU Free Documentation License..31

A.1. PREAMBLE...31
A.2. APPLICABILITY AND DEFINITIONS...31
A.3. VERBATIM COPYING...32
A.4. COPYING IN QUANTITY..32
A.5. MODIFICATIONS...33
A.6. COMBINING DOCUMENTS...34
A.7. COLLECTIONS OF DOCUMENTS...34
A.8. AGGREGATION WITH INDEPENDENT WORKS..35
A.9. TRANSLATION ..35
A.10. TERMINATION...35
A.11. FUTURE REVISIONS OF THIS LICENSE...35
A.12. How to use this License for your documents...36

iv

List of Figures
3-1. Bit and Byte Numbering in Halfwords...5
3-2. Bit and Byte Numbering in Words...5
3-3. Bit and Byte Numbering in Doublewords..5
3-4. Scalar Types..5
3-5. Structure Smaller Than a Word..6
3-6. No Padding...7
3-7. Internal Padding..7
3-8. Internal and Tail Padding..7
3-9. Union Allocation..8
3-10. Bit Numbering..10
3-11. Bit-field Allocation...10
3-12. Boundary Alignment..11
3-13. Doubleword Boundary Alignment...11
3-14. Storage Unit Sharing..12
3-15. Union Allocation..12
3-16. Unnamed bit-fields...13
4-1. Relocation Table...22
5-1. Absolute Procedure Linkage Table (32-bit version)...27
5-2. Position-Independent Procedure Linkage Table (32-bit version)...28

v

Chapter 1. Introduction

1.1. The M32R Architecture and the System V ABI

The System V Application Binary Interface, or ABI, defines a system interface for compiled application
programs. Its purpose is to establish a standard binary interface for application programs on systems that
implement the interfaces defined in the System V Interface Definition, Edition 4.

This document is a supplement to the generic System V ABI, and it contains information specific to System V
implementations built on the M32R processor architecture. Together, these two specifications, the generic
System V ABI and the M32R Architecture System V ABI Supplement (hereafter referred to as the M32R ABI),
constitute a complete System V Application Binary Interface specification for systems that implement the
processor architecture of the M32R microprocessors.

Note that this M32R ABI applies to any system built with the M32R processor chips.

1.2. How to Use the M32R ELF ABI Supplement

This document is a supplement to the generic System V ABI and contains information referenced in the generic
specification that may differ when System V is implemented on different processors. Therefore, the generic ABI
is the prime reference document, and this supplement is provided to fill gaps in that specification.

As with the System V ABI, this specification references other publicly- available reference documents, especially
the Renesas M32R Software and Hardware Manual. All the information referenced by this supplement should be
considered part of this specification, and just as binding as the requirements and data explicitly included here.

1.3. Evolution of the ABI Specification

The System V Application Binary Interface will evolve over time to address new technology and market
requirements, and will be reissued at intervals of approximately three years. Each new edition of the
specification is likely to contain extensions and additions that will increase the potential capabilities of
applications that are written to confirm to the ABI.

As with the System V Interface Definition, the ABI will implement Level 1 and Level 2 support for its
constituent parts. Level 1 support indicates that a portion of the specification will configure to be supported
indefinitely, while Level 2 support means that a portion of the specification may be withdrawn or altered after the
next edition of the ABI is made available. That is, a portion of the specification moved to Level 2 support in an
edition of the ABI specification will remain in effect at least until the following edition of the specification is
published.

These Level 1 and Level 2 classifications and qualifications apply to this Supplement, as well as to the generic
specification. All components of the ABI and of this supplement have Level 1 support unless they are explicitly

1

Chapter 1. Introduction

labelled as Level 2.

The following documents may be of interest to the reader of this specification:

• M32R Software and Hardware Manual, Renesas Technology Corp.

• System V Interface Definition, Issue 3.

2

Chapter 2. Software Installation

2.1. Physical Distribution Media and Formats

This document does not specify any physical distribution media or formats. Any agreed upon distribution media
may be used.

3

Chapter 3. Low Level System Information

3.1. Machine Interface

3.1.1. Processor Architecture

The Renesas M32R Software Manualdefines the processor architecture. The architecture is hereafter referred to
as the M32R architecture. Programs intended to execute directly on the processor use the instruction set,
instruction encodings, and instruction semantics of the architecture. Three points deserve explicit mention.

• A program may assume all documented instructions exist.

• A program may assume all documented instructions work.

• A program may use only the instructions defined by the architecture.

In other words, from a program’s perspective, the execution environment provides a complete and working
implementation of the M32R architecture.

This does not imply that the underlying implementation provides all instructions in hardware, only that the
instructions perform the specified operations and produce the specified results. The ABI neither places
performance constraints on systems nor specifies what instructions must be implementation in hardware. A
software emulation of the architecture could conform to the ABI.

Some processors might support the M32R architecture as a subset, providing additional instructions or
capabilities. Programs that use those capabilities explicitly do not conform to the M32R ABI. Executing those
programs on machines without the additional capabilities gives undefined behavior.

3.1.2. Data Representation

Within this specification, the term halfword refers to a 16-bit object, the term word refers to a 32-bit object, and
the term doubleword refers to a 64-bit object.

3.1.3. Byte Ordering

The architecture defines an 8-bit byte, a 16-bit halfword, a 32-bit word, and a 64-bit doubleword. Byte ordering
defines how the bytes that make up halfwords, words, and doublewords are ordered in memory. Most significant
byte (MSB) byte ordering, or "big-endian" as it is sometimes called, means that the most significant byte is
located in the lowest addressed byte position in a storage unit (byte 0). Least significant byte (LSB) byte
ordering, or "little-endian" as it is sometimes called, means that the least significant byte is located in the lowest
addressed byte position in a storage unit (byte 0).

All M32R family processors support big-endian byte ordering and some processors of them support little-endian
byte ordering too. This specification defines two ABIs, one for each type of byte ordering. An implementation

4

Chapter 3. Low Level System Information

must state which type of byte ordering it supports. The following figures illustrate the conventions for bit and
byte numbering within various width storage units. These conventions apply to both integer data and
floating-point data, where the most significant byte of a floating-point value holds the sign and at least the start of
the exponent. The figures show little-endian byte numbers in the upper right corners, big-endian byte numbers in
the upper left corners, and bit numbers in the lower corners.

Note: In the M32R Architecture documentation, the bits in a word are numbered from left to right (MSB to
LSB), and figures usually show only the big-endian byte order.

Figure 3-1. Bit and Byte Numbering in Halfwords

+-------+-------+
0 1	1 0
msb	lsb
0 7	8 15
+-------+-------+

Figure 3-2. Bit and Byte Numbering in Words

+-------+-------+-------+-------+
0 3	1 2	2 1	3 0
msb			lsb
0 7	8 15	16 23	24 31
+-------+-------+-------+-------+

Figure 3-3. Bit and Byte Numbering in Doublewords

+-------+-------+-------+-------+
0 7	1 6	2 5	3 4
msb			
0 7	8 15	16 23	24 31
+-------+-------+-------+-------+			
4 3	5 2	6 1	7 0
			lsb
32 39	40 47	48 55	56 63
+-------+-------+-------+-------+

3.1.4. Fundamental Types

The following figure shows the correspondence between ANSI C’s scalar types and the processor’s.

Figure 3-4. Scalar Types

Alignment M32R
Type C sizeof (bytes) Architecture

char 1 1 signed byte
signed char 1 1

--
unsigned char 1 1 unsigned byte

5

Chapter 3. Low Level System Information

--
short 2 2 signed halfword
signed short

--
unsigned short 2 2 unsigned halfword

--
Integral int

signed int
long 4 4 signed word
signed long
enum

--
unsigned int 4 4 unsigned word
unsigned long

Pointer any-type * 4 4 unsigned word

any-type (*){}

float 4 4 single-precision(IEEE)
Floating-point double 8 4 double-precision(IEEE)

long double 8 4 double-precision(IEEE)

Note: The M32R architecture does not require doubleword alignment for double-precision values.
Nevertheless, for data structure compatibility with other Renesas architectures, compilers may provide a
method to align double-precision values on doubleword boundaries.

3.1.5. Aggregates and Unions

Aggregates (structures and arrays) and unions assume the alignment of their most strictly aligned component,
that is, the component with the largest alignment. The size of any object, including aggregates and unions, is
always a multiple of the alignment of the object. An array uses the same alignment as its elements. Structure and
union objects may require padding to meet size and alignment constraints:

• An entire structure or union object is aligned on the same boundary as its most strictly aligned member.

• Each member is assigned to the lowest available offset with the appropriate alignment. This may require
internal padding, depending on the previous member.

• If necessary, a structure’s size is increased to make it a multiple of the structure’s alignment. This may require
tail padding, depending on the last member.

In the following examples, members’ byte offsets for little-endian implementations appear in the upper right
corners; offsets for big-endian implementations in the upper left corners.

Figure 3-5. Structure Smaller Than a Word

struct {
char c;

};
byte aligned, sizeof is 1
+-------+
|0 0|

6

Chapter 3. Low Level System Information

| c |
+-------+

Figure 3-6. No Padding

struct {
char c;
char d;
short s;
int n;

};
word aligned, sizeof is 8
big endian:

+-------+-------+-------+-------+
|0 |1 |2 |
| c | d | s |
+-------+-------+-------+-------+
|4 |
| n |
+-------+-------+-------+-------+

little endian:

+-------+-------+-------+-------+
| 2| 1| 0|
| s | d | c |
+-------+-------+-------+-------+
| 4|
| n |
+-------+-------+-------+-------+

Figure 3-7. Internal Padding

struct {
char c;
short s;

};
halfword aligned, sizeof is 4
big endian:

+-------+-------+-------+-------+
|0 |1 |2 |
| c | pad | s |
+-------+-------+-------+-------+

little endian:

+-------+-------+-------+-------+
| 2| 1| 0|
| s | pad | c |
+-------+-------+-------+-------+

7

Chapter 3. Low Level System Information

Figure 3-8. Internal and Tail Padding

struct {
char c;
int n;
long long l;
short s;

};
word aligned, sizeof is 24
big endian:

+-------+-------+-------+-------+
|0 |1 |
| c | pad |
+-------+-------+-------+-------+
|4 |
| n |
+-------+-------+-------+-------+
|8 |
| l |
+-------+-------+-------+-------+
|12 |
| l |
+-------+-------+-------+-------+
|16 |18 |
| s | pad |
+-------+-------+-------+-------+
|20 |
| pad |
+-------+-------+-------+-------+

little endian:

+-------+-------+-------+-------+
| 1| 0|
| pad | c |
+-------+-------+-------+-------+
| 4|
| n |
+-------+-------+-------+-------+
| 8|
| l |
+-------+-------+-------+-------+
| 12|
| l |
+-------+-------+-------+-------+
| 18| 16|
| pad | s |
+-------+-------+-------+-------+
| 20|
| pad |
+-------+-------+-------+-------+

8

Chapter 3. Low Level System Information

Figure 3-9. Union Allocation

union {
char c;
short s;
int j;

};
word aligned, sizeof is 4
big endian:

+-------+-------+-------+-------+
|0 |1 |
| c | pad |
+-------+-------+-------+-------+
|0 |2 |
| s | pad |
+-------+-------+-------+-------+
|0 |
| j |
+-------+-------+-------+-------+

little endian:

+-------+-------+-------+-------+
| 1| 0|
| pad | c |
+-------+-------+-------+-------+
| 2| 0|
| pad | s |
+-------+-------+-------+-------+
| 0|
| j |
+-------+-------+-------+-------+

3.1.6. Bit-Fields

C struct and union definitions may have "bit-fields," defining integral objects with a specified number of bits.

In the following table, a signed range goes from - (2(w - 1)) to (2(w - 1)) - 1 and an unsigned range goes from 0 to (2w)
- 1.

Bit-field type Width (w) Range

signed char 1 to 8 signed
char unsigned
unsigned char unsigned

signed short 1 to 16 signed
short signed
unsigned short unsigned

signed int 1 to 32 signed
int signed
unsigned int unsigned

9

Chapter 3. Low Level System Information

enum unsigned

"Plain" bit-fields (that is, those neither signed nor unsigned) may have either positive or negative values, except
in the case of plain char, which is always positive. Bit-fields obey the same size and alignment rules as other
structure and union members, with the following additions:

• Bit-fields are allocated from right to left (least to most significant) on little-endian implementations and from
left to right (most to least significant) on big-endian implementations.

• Bit-fields are limited to at most 32 bits. Adjacent bit-fields that cross a 64-bit boundary will start a new storage
unit.

• The alignment of a bit-field is the same as the alignment of the base type of the bit-field. Thus, an int bit-field
will have word alignment.

• Bit-fields must share a storage unit with other structure and union members (either bit-field or non-bit-field) if
and only if there is sufficient space within the storage unit.

• Unnamed bit-fields’ types do not affect the alignment of a structure or union, although an individual bit-field’s
member offsets obey the alignment constraints. An unnamed, zero-width bit-field shall prevent any further
member, bit-field or other, from residing in the storage unit corresponding to the type of the zero-width
bit-field.

The following examples show struct and union members’ byte offsets in the upper right corners for little-endian
implementations, and in the upper left corners for big-endian implementations. Bit numbers appear in the lower
corners.

Figure 3-10. Bit Numbering

0x01020304

+-------+-------+-------+-------+
0 3	1 2	2 1	3 0
01	02	03	04
0 7	8 15	16 23	24 31
+-------+-------+-------+-------+

Figure 3-11. Bit-field Allocation

struct {
int j : 5;
int k : 6;
int m : 7;

};
word aligned, sizeof is 4
big endian:

+-----+------+-------+----------+
0			
j	k	m	pad
0 4	5 10	11 17	18 31
+-----+------+-------+----------+

little endian:

+----------+-------+------+-----+

10

Chapter 3. Low Level System Information

			0
pad	m	k	j
0 13	14 20	21 26	27 31
+----------+-------+------+-----+

Figure 3-12. Boundary Alignment

struct {
short s : 9;
int j : 9;
char c;
short t : 9;
short u : 9;
char d;

};
word aligned, sizeof is 8
big endian:

+--------+--------+-----+-------+
0			3
s	j	pad	c
0 8	9 17	18 23	24 31
+--------+--------+-----+-------+			
4			7
t	u	pad	d
0 8	9 17	18 23	24 31
+--------+--------+-----+-------+

little endian:

+-------+-----+--------+--------+
3			0
c	pad	j	s
0 7	8 13	14 22	23 31
+-------+-----+--------+--------+			
7			4
d	pad	u	t
0 7	8 13	14 22	23 31
+-------+-----+--------+--------+

Figure 3-13. Doubleword Boundary Alignment

struct {
long i : 56;
int j : 9:

};
doubleword aligned, sizeof is 16
big endian:

+-------------------------------+
|0 |
| i |
|0 31|
+-----------------------+-------+
|4 | |
| i | pad |

11

Chapter 3. Low Level System Information

|32 55|56 63|
+--------+--------------+-------+
8	
j	pad
0 8	9 31
+----------------------+--------+	
12	
pad	
0 31	
+-------------------------------+

little endian:

+-------------------------------+
| 0|
| i |
|0 31|
+-------+-----------------------+
	4
pad	i
32 39	40 63
+-------+--------------+--------+	
	8
pad	j
0 22	23 31
+----------------------+--------+	
12	
pad	
0 31	
+-------------------------------+

Figure 3-14. Storage Unit Sharing

struct {
char c;
short s : 8;

};
halfword aligned, sizeof is 2
big endian:

+-------+-------+
0	1
c	s
0 7	8 15
+-------+-------+

little endian:

+-------+-------+
1	0
s	c
0 7	8 15
+-------+-------+

12

Chapter 3. Low Level System Information

Figure 3-15. Union Allocation

union {
char c;
short s : 8;

};
halfword aligned, sizeof is 2
big endian:

+-------+-------+
0	1
c	pad
0 7	8 15
+-------+-------+	
0	1
s	pad
0 7	8 15
+-------+-------+

little endian:

+-------+-------+
1	0
pad	c
0 7	8 15
+-------+-------+	
1	0
pad	s
0 7	8 15
+-------+-------+

Figure 3-16. Unnamed bit-fields

struct {
char c;
int : 0;
char d;
short : 9;
char e;

};
byte aligned, sizeof is 8
big endian:

+-------+-----------------------+
0	1
c	:0
0 7	8 31
+-------+--------+------+-------+	
4	
d	:9
0 7	8 16
+-------+--------+------+-------+

little endian:

+-----------------------+-------+
| 1| 0|

13

Chapter 3. Low Level System Information

| :0 | c |
|0 23|24 31|
+-------+------+--------+-------+
7			4
e	pad	:9	d
0 7	8 14	15 23	24 31
+-------+------+--------+-------+

Note: In this example, the presence of the unnamed int and short fields does not affect the alignment of the
structure. They align the named members relative to the beginning of the structure, but the named members
may not be aligned in memory on suitable boundaries. For example, the d members in an array of these
structures will not all be on an int (4-byte) boundary.

3.2. Function Calling Sequence

3.2.1. Registers and the Stack Frame

3.2.1.1. CPU Registers

Register Name Use
(software name)
--
r0 - r3 Used for passing arguments to functions.

Additional arguments are passed on the
stack (see below). r0,r1 is also used
to return the result of function calls.
The values of these registers are not
preserved across function calls.

r4 - r7 Temporary registers for expression evaluation.
The values of these registers are not preserved
across function calls.

r6 is also reserved for use as a temp in the
PIC calling sequence (if ever necessary)
and may not be used in the function calling
sequence or prologue of functions.

r7 is also used as the static chain pointer
in nested functions (a GNU C extension)
and may not be used in the function calling
sequence or prologue of functions.

r8 - r11 Temporary registers for expression evaluation.
The values of these registers are preserved
across function calls.

r12 Temporary register for expression evaluation.
Its value is preserved across function calls.

14

Chapter 3. Low Level System Information

It is also reserved for use as potential
"global pointer".

r13 (fp) Frame pointer.

r14 (lr) Link register.
This register contains the return address
in function calls.

r15 (sp) Stack pointer.

3.2.1.2. Special CPU Registers

condition bit This is a 1 bit register that contains the
result of compare instructions.

accumulator This is a 64 bit register that contains the
result of multiply/accumulate instructions.

1. The stack grows downwards from high addresses to low addresses.

2. A leaf function need not allocate a stack frame if it doesn’t need one.

3. A frame pointer need not be allocated.

4. The stack pointer shall always be aligned to 4 byte boundaries.

5. The register save area shall be aligned to a 4 byte boundary.

Stack frames for functions that take a fixed number of arguments look like:

Before call After call
+---------------------+ +---------------------+
| | | |

high | local variables, | | local variables, |
mem | reg save area, etc. | | reg save area, etc. |

| | | |
+---------------------+ +---------------------+
arguments on stack		arguments on stack

SP,FP->+---------------------+ +---------------------+
| |
| register save area |
| |
+---------------------+
| |
| local variables |
| |
+---------------------+
| |
| alloca allocations |
| |
+---------------------+
| |

15

Chapter 3. Low Level System Information

low | arguments on stack |
memory | |

SP,FP->+---------------------+

Note that FP points to the same location as SP.

Stack frames for functions that take a variable number of arguments look like:

Before call After call
+---------------------+ +---------------------+
| | | |

high | local variables, | | local variables, |
mem | reg save area, etc. | | reg save area, etc. |

| | | |
+---------------------+ +---------------------+
arguments on stack		arguments on stack

SP,FP->+---------------------+ +---------------------+
| |
| save area for |
| anonymous parms |
| passed in registers |
| (the size of this |
| area may be zero) |
| |
+---------------------+
| |
| register save area |
| |
+---------------------+
| |
| local variables |
| |
+---------------------+
| |
| alloca allocations |
| |
+---------------------+
| |

low | arguments on stack |
memory | |

SP,FP->+---------------------+

3.2.1.3. Argument Passing

Arguments are passed to a function using first registers and then memory if the argument passing registers are
used up. Each register is assigned an argument until all are used. Unused argument registers have undefined
values on entry. The following rules must be adhered to.

1. Quantities of size 8 bytes or less are passed in registers if available, then memory. Larger quantities are
passed by reference.

16

Chapter 3. Low Level System Information

2. Arguments passed by reference are passed by making a copy on the stack and then passing a pointer to that
copy.

3. If a data type would overflow the register arguments, then it is passed in registers and memory.

e.g. A ‘long long’ data type passed in r3 would be passed in r3 and the first 4 bytes of the stack.

4. Arguments passed on the stack begin at ‘sp’ with respect to the caller.

5. Each argument passed on the stack is aligned on a 4 byte boundary.

6. Space for all arguments is rounded up to a multiple of 4 bytes.

3.2.1.4. Function Return Values

Integers, floating point values, and aggregates of 8 bytes or less are returned in register r0 (and r1 if necessary).

Aggregates larger than 8 bytes are returned by having the caller pass the address of a buffer to hold the value in
r0 as an "invisible" first argument. All arguments are then shifted down by one. The address of this buffer is
returned in r0.

3.2.1.5. Functions Returning Scalars or No Value

3.2.1.6. Functions Returning Structures or Unions

3.2.1.7. Integral and Pointer Arguments

3.2.1.8. Floating-Point Arguments

3.2.1.9. Structure and Union Arguments

17

Chapter 3. Low Level System Information

3.3. Operating System Interface

3.3.1. Virtual Address Space

• Page Size

• Virtual Address Assignments

• Managing the Process Stack

• Coding Guidelines

3.3.2. Processor Execution Modes

3.3.3. Execution Interface

• Hardware Exception Types

• Software Trap Types

3.3.4. Process Initialization

• Special Registers

• Process Stack and Registers

3.4. Coding Examples

3.4.1. Code Model Overview

3.4.2. Function Calls

Absolute Direct Calls:

C Assembly
extern void function ();
function (); bl function

Absolute Indirect Calls:

C Assembly
extern void (*ptr) ();

18

Chapter 3. Low Level System Information

(*ptr)(); ld24 r4,#ptr
ld r5,@r4
jl r5

3.4.3. Switch Tables

Absolute code model:

C Assembly
void foo ()
{
...
switch (j) ld r4,[j]
{ cmpui r4,#4
case 0: bnc .Ldef

... slli r4,#2
case 2: ld24 r5,#.Ltab

... add r4,r5
case 3: ld r4,@r4

... jmp r4
default:

...
}
...
}

.section .rodata
.Ltab: .word .Lcase0

.word .Ldef

.word .Lcase2

.word .Lcase3

3.4.4. Position-Independent Function Prologue

3.4.5. Variable Argument List

3.4.6. Allocating Stack Space Dynamically

While C does not require dynamic stack allocation within a function, this ABI supports them. The stack pointer
must be kept aligned to 4 byte boundaries.

19

Chapter 4. Object Files

4.1. ELF Header

For file identification e_ident, the M32R architecture requires the following values.

Position Value

e_ident[BI_CLASS] ELFCLASS32
e_ident[BI_DATA] ELFDATA2MSB

Processor identification resides in the ELF header’s e_machine member and must have the value EM_M32R.

The ELF header’s e_flags member holds bit flags associated with the file. The M32R architecture defines no
flags; so this member contains zero.

4.2. Special Sections

Various sections hold programs and control information. Sections in the list below are used by the system and
have the indicated types and attributes.

Name Type Attributes

.got SHT_PROGBITS SHF_ALLOC + SHF_WRITE
.plt SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.got This section holds the global offset table. See Section 3.4
and Section 5.2.2 for more information.

.plt This section holds the procedure linkage table. See Procedure
Linkage Table in Chapter 5 for more information.

4.3. Symbol Table

4.3.1. Symbol Values

If an executable file contains a reference to a function defined in one of its associated shared objects, the symbol
table section for that file will contain an entry for that symbol. The st_shndx member of that symbol table entry
contains SHN_UDEF. This signals to the dynamic linker that the symbol definition for that function is not

20

Chapter 4. Object Files

contained in the executable file itself. If that symbol has been allocated a procedure linkage table entry in the
executable file, and the st_value member for that symbol table entry is non-zero, the value will contain the virtual
address of the first instruction of that procedure linkage table entry. Otherwise, the st_value member contains
zero. This procedure linkage table entry address is used by the dynamic linker in resolving references to the
address of the function. SeeSection 5.2.3for details.

4.4. Relocation

4.4.1. Relocation Types

Relocation entries describe how to alter the instruction and data relocation fields shown below. Bit numbers
appear in the lower box corners; little-endian byte numbers appear in the upper right box corners; big-endian
numbers appear in the upper left box corners.

+-----------------+
| half16 |
|0 15|
+-----------------+
+-----------------------------------+
| word32 |
|0 31|
+-----------------------------------+
+-----------------+-----------------+
| | imm16 |
|0 |16 31|
+-----------------+-----------------+
+--------+--------------------------+
| | imm24 |
|0 |8 31|
+--------+--------------------------+
+--------+--------+
| | disp8 |
|0 |8 15|
+--------+--------+
+-----------------+-----------------+
| | disp16 |
|0 |16 31|
+-----------------+-----------------+
+--------+--------------------------+
| | disp24 |
|0 |8 31|
+--------+--------------------------+

word32 This specifies a 32-bit fields occupying 4 bytes with arbitrary
byte alignment. These values use the same byte order as other
word values in the M32R architecture.

+--------+--------+--------+--------+
| 0| 1| 2| 3|
| 01 | 02 | 03 | 04 |

21

Chapter 4. Object Files

0x01020304 |0 | | | 31|
+--------+--------+--------+--------+

Calculations below assume the actions are transforming a relocatable file into either an executable or a shared
object file. Conceptually, the link editor merges one or more relocatable files to form the output. It first decides
how to combine and locate the input files, then updates the symbol values, and finally performs the relocation.
Relocations applied to executable or shared object files are similar and accomplish the same result. Descriptions
below use the following notation.

A This means the added used to compute the value of the relocatable
field.

B This means the base address at which a shared object has been loaded
into memory during execution. Generally, a shared object file is built
with a 0 base virtual address, but the execution address will be
different. See "Program Header" in the System V ABI for more
information about the base address.

G This means the offset into the global offset table at which the
address of the relocation entry’s symbol will reside during execution.
See Section 3.4 and Section 5.2.2 for more information.

GOT This means the address of the global offset table. See
Section 3.4 and Section 5.2.2 for more information.

L This means the place (section offset or address) of the procedure
linkage table entry for a symbol. A procedure linkage table entry
redirects a function call to the proper destination. The link
editor builds the initial procedure linkage table, and the dynamic
linker modifies the entries during execution. See Section 5.2.4
for more information.

P This means the place (section offset or address) of the storage
unit being relocated (computed using r_offset).

S This means the value of the symbol whose index resides in the
relocation entry.

A relocation entry’s r_offset value designates the offset or virtual address of the first byte of the affected storage
unit. The relocation type specifies which bits to change and how to calculate their values. The M32R architecture
uses only Elf32_Rel relocation entries, the field to be relocated holds the addend. In all cases, the addend and the
computed result use the same byte order.

Figure 4-1. Relocation Table

Name Value Field Calculation

R_M32R_NONE 0 none none
R_M32R_16 1 half16 S+A ------
R_M32R_32 2 word32 S+A ^
R_M32R_24 3 imm24 (S+A)&0xFFFFFF |
R_M32R_10_PCREL 4 disp8 ((S+A-P)>>2)&0xFF |
R_M32R_18_PCREL 5 disp16 ((S+A-P)>>2)&0xFFFF |
R_M32R_26_PCREL 6 disp24 ((S+A-P)>>2)&0xFFFFFF |
R_M32R_HI16_ULO 7 imm16 ((S+A)>>16) OLD TYPE

22

Chapter 4. Object Files

R_M32R_HI16_SLO 8 imm16 ((S+A)>>16) |
or ((S+A+0x10000)>>16) |

R_M32R_LO16 9 imm16 (S+A)&0xFFFF |
R_M32R_SDA16 10 imm16 (S+A-_SDA_BASE_)&0xFFFF |
R_M32R_GNU_VTINHERIT 11 V
R_M32R_GNU_VTENTRY 12 ------

R_M32R_16_RELA 33 half16 S+A
R_M32R_32_RELA 34 word32 S+A
R_M32R_24_RELA 35 imm24 (S+A)&0xFFFFFF
R_M32R_10_PCREL_RELA 36 disp8 ((S+A-P)>>2)&0xFF
R_M32R_18_PCREL_RELA 37 disp16 ((S+A-P)>>2)&0xFFFF
R_M32R_26_PCREL_RELA 38 disp24 ((S+A-P)>>2)&0xFFFFFF
R_M32R_HI16_ULO_RELA 39 imm16 ((S+A)>>16)
R_M32R_HI16_SLO_RELA 40 imm16 ((S+A)>>16)

or ((S+A+0x10000)>>16)
R_M32R_LO16_RELA 41 imm16 (S+A)&0xFFFF
R_M32R_SDA16_RELA 42 imm16 (S+A-_SDA_BASE_)&0xFFFF
R_M32R_RELA_GNU_VTINHERIT 43
R_M32R_RELA_GNU_VTENTRY 44

R_M32R_GOT24 48 imm24 G+A-P
R_M32R_26_PLTREL 49 disp24 L+A-P
R_M32R_COPY 50 none none
R_M32R_GLOB_DAT 51 word32 S
R_M32R_JMP_SLOT 52 word32 S
R_M32R_RELATIVE 53 word32 B+A
R_M32R_GOTOFF 54 word32 GOT-(S+A)
R_M32R_GOTPC24 55 word32 GOT+A-P
R_M32R_GOT16_HI_ULO 56 imm16 ((G+A-P)>>16)
R_M32R_GOT16_HI_SLO 57 imm16 ((G+A-P)>>16)

or ((G+A-P+0x10000)>>16)
R_M32R_GOT16_LO 58 imm16 (G+A-P)&0xFFFF
R_M32R_GOTPC_HI_ULO 59 imm16 (GOT+A-P)>>16
R_M32R_GOTPC_HI_SLO 60 imm16 (GOT+A-P)>>16

or ((GOT+A-P+0x10000)>>16)
R_M32R_GOTPC_LO 61 imm16 (GOT+A-P)&0xFFFF
R_M32R_GOTOFF_HI_ULO 62 imm16 (S+A-GOT)>>16
R_M32R_GOTOFF_HI_SLO 63 imm16 (S+A-GOT)>>16

or (S+A-GOT+0x10000)>>16
R_M32R_GOTOFF_LO 64 imm16 (S+A-GOT)&0xFFFF

Some relocation types have semantics beyond simple calculation.

R_M32R_GOT24
R_M32R_GOT16_HI_ULO
R_M32R_GOT16_HI_SLO
R_M32R_GOT16_LO

This relocation type computes the distance from the base of the global offset table to the symbol’s global
offset table entry. It additionally instructs the link editor to build a global offset table.

ex1) ld24 r12,#label
ex2) seth r12,#high(label)

or3 r12,r12,#low(label)
ex3) seth r12,#shigh(label)

23

Chapter 4. Object Files

add3 r12,r12,#low(label)

R_M32R_26_PLTREL

This relocation type computes the address of the symbol’s procedure linkage table entry and additionally
instructs the link editor to build a global offset table.

R_M32R_COPY

The link editor creates this relocation type for dynamic linking. Its offset member refers to a location in a
writable segment. The symbol table index specifies a symbol that should exist both in the current object file
and in a shared object. During execution, the dynamic linker copies data associated with the shared object’s
symbol to the location specified by the offset.

R_M32R_GLOB_DAT

This relocation type used to set a global offset table entry to the address of the specified symbol. The special
relocation type allows one to determine the correspondence between symbols and global offset table entries.

R_M32R_JMP_SLOT

The link editor creates this relocation type for dynamic linking. Its offset member gives the location of a
procedure linkage table entry. The dynamic linker modifies the procedure linkage table to transfer control to
the designated symbol’s address (SeeSection 5.2.4for more information).

R_M32R_RELATIVE

The link editor creates this relocation type for dynamic linking. Its offset member gives the location within
a shred object that contains a value representing a relative address. The dynamic linker computes the
corresponding virtual address by adding the virtual address at which the shared object was loaded to the
relative address. Relocation entries for this type must specify 0 for the symbol table index.

R_M32R_GOTOFF
R_M32R_GOTOFF_HI_ULO
R_M32R_GOTOFF_HI_SLO
R_M32R_GOTOFF_LO

This relocation type computes the difference between a symbol’s value and the address of the global offset
table. It additionally instructs the link editor to build the global offset table.

R_M32R_GOTPC24
R_M32R_GOTPC_HI_ULO
R_M32R_GOTPC_HI_SLO
R_M32R_GOTPC_LO

These relocation types resemble R_M32R_26_PCREL, etc., except they use the address of the global offset
table in their calculation. The symbol referenced in these relocations normally is
_GLOBAL_OFFSET_TABLE_, which additionally instructs the link editor to build a global offset table.

ex1) ld24 r12,#_GLOBAL_OFFSET_TABLE_
ex2) seth r12,#high(_GLOBAL_OFFSET_TABLE_)

or3 r12,r12,#low(_GLOBAL_OFFSET_TABLE_+4)
ex3) seth r12,#shigh(_GLOBAL_OFFSET_TABLE_)

add3 r12,r12,#low(_GLOBAL_OFFSET_TABLE_+4)

24

Chapter 5. Program Loading and Dynamic
Linking

5.1. Program Loading

As the system creates or arguments a process image, it logically copies a file’s segment to a virtual memory
segment. When -- and if -- the system physically reads the file depends on the program’s execution behavior,
system load, and so on. A process does not require a physical page unless it references the logical page during
execution, and processes commonly leave many pages unreferenced. Therefore, delaying physical reads
frequently obviates them, improving system performance. To obtain this efficiently in practice, executable and
shared object files must have segment images whose file offsets and virtual addresses are congruent, modulo the
page size.

Virtual addresses and file offsets for the M32R architecture segments are congruent modulo 4KB (0x1000) or
larger powers of 2. Because 4KB is the maximum page size, the files will be suitable for paging regardless of
physical page size.

File Offset File Virtual Address
+-------------------------+

0 | ELF header |
+-------------------------+
| Program header table |
+-------------------------+
| Other information |
+-------------------------+

0x1000 | Text segment | 0x8048000
| ... |
| 0x2be00 bytes | 0x8073dff
+-------------------------+

0x2ce00 | Data segment | 0x8074e00
| ... |
| 0x4e00 bytes | 0x8079bff
+-------------------------+

0x31c00 | Other information |
| ... |
+-------------------------+

5.2. Dynamic Linking

5.2.1. Dynamic Section

Dynamic section entries give information to the dynamic linker. Some of this information is processor-specific,
including the interpretation of some entries in the dynamic structure.

25

Chapter 5. Program Loading and Dynamic Linking

DT_PLTGOT

On the M32R architecture, the entry’s d_ptr member gives the address of the first entry in the global offset
table. As mentioned below, the first three global offset table entries are reserved, and two are used to hold
procedure linkage table information.

5.2.2. Global Offset Table

Position-independent code cannot, in general, contain absolute virtual addresses. Global offset tables hold
absolute addresses in private data, thus making the addresses available without compromising the position-
independence and sharability of a program’s text. A program references its global offset table using
position-independent addressing and extracts absolute values, thus redirecting position-independent references to
absolute locations.

Initially, the global offset table holds information as required by its relocation entries [see "Relocation" in
Chapter 4]. After the system creates memory segments for a loadable object file, the dynamic linker processes
the relocation entries, some of which will be type R_M32R_GLOB_DAT referring to the global offset table. The
dynamic linker determines the associated symbol values, calculates their absolute addresses, and sets the
appropriate memory table entries to the proper values. Although the absolute addresses are unknown when the
link editor builds an object file, the dynamic linker knows the addresses of all memory segments and can thus
calculate the absolute addresses of the symbols contained therein.

If a program requires direct access to the absolute address of a symbol, that symbol will have a global offset
table entry. Because the executable file and shared objects have separate global offset tables, a symbol’s address
may appear in several tables. The dynamic linker processes all the global offset table relocations before giving
control to any code in the process image, thus ensuring the absolute addresses are available during execution.

The table’s entry zero is reserved to hold the address of the dynamic structure, referenced with the symbol
_DYNAMIC. This allows a program, such as the dynamic linker, to find its own dynamic structure without
having yet processed its relocation entries. This is especially important for the dynamic linker, because it must
initialize itself without relying on other programs to relocate its memory image. On the M32R architecture,
entries one and two in the global offset table also are reserved. "Procedure Linkage Table" below describes them.

The system may choose different memory segment addresses for the same shared object in different programs; it
may even choose different library addresses for different executions of the same program. Nonetheless, memory
segments do not change addresses once the process image is established. As long as a process exists, its memory
segments reside at fixed virtual addresses.

A global offset table’s format and interpretation are processor-specific. For the M32R architecture, the symbol
_GLOBAL_OFFSET_TABLE_ may be used to access the table.

5.2.3. Function Addresses

References to the address of a function from an executable file and the shared objects associated with it might
not resolve to the same value. References from within shared objects will normally be resolved by the dynamic
linker to the virtual address of the function itself. References from within the executable file to a function defined

26

Chapter 5. Program Loading and Dynamic Linking

in a shared object will normally be resolved by the link editor to the address of the procedure linkage table entry
for that function within the executable file.

To allow comparisons of function addresses to work as expected, if an executable file references a function
defined in a shared object, the link editor will place the address of the procedure linkage table entry for that
function in its associated symbol table entry. [See "Symbol Values" in Chapter 4]. The dynamic linker treats such
symbol table entries specially. If the dynamic linker is searching for a symbol, and encounters a symbol table
entry for that symbol in the executable file, it normally follows the rules below.

1. If the st_shndx member of the symbol table entry is not SHN_UNDEF, the dynamic linker has found a
definition for the symbol and uses its st_value members as the symbol’s address.

2. If the st_shndx member is SHN_UNDEF and the symbol is of type STT_FUNC and the st_value member is
not zero, the dynamic linker recognizes this entry as special and uses the st_value member as the symbol’s
address.

3. Otherwise, the dynamic linker considers the symbol to be undefined within the executable file and continues
processing.

Some relocations are associated with procedure linkage table entries. These entries are used for direct function
calls rather than for references to function addresses. These relocations are not treated in the special way
described above because the dynamic linker must not redirect procedure linkage table entries to point to
themselves.

5.2.4. Procedure Linkage Table

Much as the global offset table redirects position-independent address calculations to absolute locations, the
procedure linkage table redirects position-independent function calls to absolute locations. The link editor
cannot resolve execution transfers (such as function calls) from one executable or shared object to another.
Consequently, the link editor arranges to have the program transfer control to entries in the procedure linkage
table. On the M32R architecture, procedure linkage tables reside in shared text, but they use addresses in the
private global offset table. The dynamic linker determines the destinations’ absolute addresses and modifies the
global offset table’s memory image accordingly. The dynamic linker thus can redirect the entries without
compromising the position- independence and sharability of the program’s text. Executable files and shared
object files have separate procedure linkage tables.

Figure 5-1. Absolute Procedure Linkage Table (32-bit version)

.PLT0: seth r6,#high(.got+4)
or3 r6,r6,#low(.got+4)
ld r4,@r6+ ; argument to the linker (id of GOT)
ld r6,@r6 ; dynamic linker address
jmp r6

.PLT1: seth r6,#shigh(.got+name1_GOT)
ld r6,@(low(.got+name1_GOT),r6)
jmp r6
ld24 r5,#name1_dynamic_offset ; arg to the linker (reloc offset)
bra .PLT0
...

.PLTn: seth r6,#shigh(.got+nameN_GOT)

27

Chapter 5. Program Loading and Dynamic Linking

ld r6,@(low(.got+nameN_GOT),r6)
jmp r6
ld24 r5,#nameN_dynamic_offset ; arg to the linker (reloc ofsset)
bra .PLT0
...

Note: PLT entry max-size is 20byte.

Figure 5-2. Position-Independent Procedure Linkage Table (32-bit version)

.PLT0: ld r4,@(4,r12) ; argument to the linker (id of GOT) on stack
ld r6,@(8,r12) ; dynamic linker address
jmp r6
...

.PLTn: ld24 r6,#nameN_GOT
add r6,r12
ld r6,@r6
jmp r6
ld24 r5,#nameN_dynamic_offset ; arg to the linker (reloc offset)
bra .PLT0
...

Note: PLT entry max-size is 20byte.

Following the steps below, the dynamic linker and the program "cooperate" to resolve symbolic references
through the procedure linkage table and the global offset table.

1. When first creating the memory image of the program, the dynamic linker sets the second and the third
entries in the global offset table to special values. Steps below explain more about these values.

2. If the procedure linkage table is position-independent, the address of the global offset table must reside in
R12. Each shared object file in the process image has its own procedure linkage table, and control transfers
to a procedure linkage table entry only from within the same object file. Consequently, the calling function
is responsible for setting the global offset table base register before calling the procedure linkage table entry.

3. For illustration, assume the program calls name1, which transfers control to the label .PLT1.

4. The first instruction jumps to the address in the global offset table entry for name1. Initially, the global offset
table holds the address of the following ld24 instruction, not the real address of name1.

5. Consequently, the program loads a relocation offset (offset) into R4. The relocation offset is a 32-bit,
non-negative byte offset into the relocation table. The designated relocation entry will have type
R_M32R_JMP_SLOT, and its offset will specify the global offset table entry used in the previous jmp
instruction. The relocation entry also contains a symbol table index, thus telling the dynamic linker what
symbol is being referenced, name1 in this case.

6. After loading the relocation offset, the program then jumps to .PLT0, the first entry in the procedure linkage
table. The ld instruction sets the value of the second global offset table entry (@(4,R12)) to R6, thus giving
the dynamic linker one word of identifying information. The program then jumps to the address in the third
global offset table entry (@(8,R12)), which transfers control to the dynamic linker.

28

Chapter 5. Program Loading and Dynamic Linking

7. When the dynamic linker receives control, it refers to the arguments passed by the registers R4 and R5,
looks at the designated relocation entry, finds the symbol’s value, stores the "real" address of name1 in its
global offset table entry, and transfers control to the desired destination.

8. Subsequent executions of the procedure linkage table entry will transfer directly to name1, without calling
the dynamic linker a second time. That is, the ld24 instruction at .PLT1 will transfer to name1, instead of
"falling through" to the next ld24 instruction.

The LD_BIND_NOW environment variable can change dynamic linking behavior. If its value is non-null, the
dynamic linker evaluates procedure linkage table entries before transferring control to the program. That is,
dynamic linker processes relocation entries of type R_M32R_JMP_SLOT during process initialization.
Otherwise, the dynamic linker evaluates procedure linkage table entries lazily, delaying symbol resolution and
relocation until the first execution of a table entry.

Note: Lazy binding generally improves overall application performance, because unused symbols do not
incur the dynamic linking overhead. Nevertheless, two situations make lazy binding undesirable for some
applications. First, the initial reference to a shared object function takes longer than subsequent calls,
because the dynamic linker intercepts the call to resolve the symbol. Some applications cannot tolerate this
unpredictability. Second, if an error occurs and the dynamic linker cannot resolve the symbol, the dynamic
linker will terminate the program. Under lazy binding, this might occur at arbitrary times. Once again, some
applications cannot tolerate this unpredictability. By turning off lazy binding, the dynamic linker forces the
failure to occur during process initialization, before the application receives control.

5.2.5. Program Interpreter

There is one valid program interpreter for programs conforming to the M32R ABI:/lib/ld-linux.so.2 .

29

Chapter 6. Libraries

This document does not specify any library interfaces.

30

Appendix A. GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

A.1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free
in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does.
But this License is not limited to software manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

A.2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying it
can be distributed under the terms of this License. The "Document", below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (For example, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License.

31

Appendix A. GNU Free Documentation License

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in
the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup has been designed to thwart or discourage subsequent modification by readers is not
Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML
designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, "Title Page" means the text near the most prominent appearance of the work’s title, preceding
the beginning of the body of the text.

A.3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

A.4. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

32

Appendix A. GNU Free Documentation License

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many
as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a
publicly-accessible computer-network location containing a complete Transparent copy of the Document, free of
added material, which the general network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

A.5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled
"History" in the Document, create one stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J.Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network location for a work that was
published at least four years before the Document itself, or if the original publisher of the version it refers to
gives permission.

33

Appendix A. GNU Free Documentation License

K. In any section entitled "Acknowledgements" or "Dedications", preserve the section’s title, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your Modified
Version by various parties--for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you or by arrangement made by
the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

A.6. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents, forming
one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any sections
entitled "Dedications". You must delete all sections entitled "Endorsements."

34

Appendix A. GNU Free Documentation License

A.7. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in
all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

A.8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or
on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an
"aggregate", and this License does not apply to the other self-contained works thus compiled with the Document,
on account of their being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is
less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers that surround
only the Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

A.9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License provided that you also include
the original English version of this License. In case of a disagreement between the translation and the original
English version of this License, the original English version will prevail.

A.10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full compliance.

35

Appendix A. GNU Free Documentation License

A.11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

A.12. How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with
the Back-Cover Texts being LIST. A copy of the license is included in the section entitled "GNU Free Documentation
License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant.
If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being LIST";
likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their use
in free software.

36

